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Preface 

It has been almost four decades since Dan Walls and I commenced the first edition 

of this book in Hamilton, New Zealand. In that time, quantum optics has spread 

over a large domain of theory and applications. Quantum computing, little more 

than a curious footnote to quantum foundations when I started, has grown into a 

multi billion dollar industry. The parallel fields of quantum communication and 
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of teachers, collaborators, students and friends in the field of quantum optics, and 

theoretical physics more broadly, and the list grows steadily. There are far too 

many to name here. This work would not have been possible without your help. 

Lewes, East Sussex, UK 

October 2024 
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1Quantisation of the Electromagnetic 
Field 

Abstract 

The study of the quantum features of light requires the quantisation of the elec-

tromagnetic field. In this chapter we quantise the field and introduce a number of 

quantum states of light, including, number states, coherent states, squeezed states, 

cat states and GKP states. The properties of these states are discussed. 

1.1 Field Quantisation 

Quantum optics is a branch of quantum electrodynamics (QED) for low energy 

scales of light and matter. Typically this means optical frequencies for the light and 

electrons bound to atoms for the matter. It is concerned with the uniquely quantum-

mechanical properties of the electromagnetic field, which are not present in a classical 

treatment of optics. We will begin by quantizing the electromagnetic field and return 

to the quantised matter field in later chapters. We shall make use of an expansion of 

the vector potential for the electromagnetic (EM) field in terms of free-field global 

modes. The bosonic nature of the EM field implies that quantization reduces to 

the quantization of the harmonic oscillator corresponding to each individual global 

free-field mode. The state of each mode lies in a separate Hillbert space. 

We shall also introduce states of the electromagnetic field appropriate to the 

description of optical fields. The first set of states we introduce are the number 

states corresponding to their being a definite number of photons in each mode. It 

has become possible to experimentally prepare number states of the field with small 

number of photons. A more typical optical field will involve a superposition of 

number states, for example, the coherent state which has the minimum uncertainty 

in field amplitude and phase allowed by the uncertainty principle, and hence is the 

closest possible quantum mechanical state to a classical field. It also possesses a 

high degree of optical coherence as will be discussed in Chap. 3, hence the name 

coherent state. The coherent state plays a fundamental role in quantum optics and 
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2 1 Quantisation of the Electromagnetic Field 

has a practical significance in that a highly stabilized laser operating well above 

threshold generates a coherent state. 

Squeezed states are also minimum-uncertainty states but unlike the coherent states 

the quantum noise is not uniformly distributed in phase. Squeezed states may have 

less noise in one quadrature than the vacuum. As a consequence the noise in the 

other quadrature is increased. We introduce the basic properties of squeezed states 

in this chapter. In Chap. 8 we describe ways to generate squeezed states and their 

applications. 

While states of definite photon number are readily defined as eigenstates of the 

number operator a corresponding description of states of definite phase is more 

difficult. This is due to the problems involved in constructing a Hermitian phase 

operator to describe a bounded physical quantity like phase. How this problem may 

be resolved together with the properties of phase states is discussed in the final section 

of this chapter. 

A convenient starting point for the quantisation of the electromagnetic field are 

the classical field equations. The free electromagnetic field obeys the source free 

Maxwell equations. 

.∇ ·  B = 0, (1.1) 

.∇ ×  E. = −∂B 

∂t 
, (1.2) 

.∇ ·  D. = 0, (1.3) 

.∇ ×  H. = 
∂D 

∂t 
, (1.4) 

where .B = μ0H, D = ε0E, .μ0, ε0 being the magnetic permeability and electric 

permittivity of free space and .μ0ε0 = c−2 with . c designating the speed of light. 

Maxwell’s equations are gauge invariant when no sources are present. A conve-

nient choice of gauge for problems in quantum optics is the Coulomb gauge. In the 

Coulomb gauge both . B and . E may be determined from a vector potential .A(r , t) by 

.B = ∇  ×  A, (1.5) 

.E = −  
∂A 

∂t 
, (1.6) 

with the Coulomb gauge condition 

.∇ ·  A = 0 , (1.7) 

We then find that .A(r , t) satisfies the wave equation 

.∇2
A(r , t) = 

1 

c2 

∂2A 

∂t2 
, (1.8) 

We separate the vector potential into positive and negative frequency components 

.A(r , t) = A
(+(r , t) + A

(−) (r , t) , (1.9) 
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where.A(+) (r , t) contains a superposition of terms that vary as.e−i ωt and. A
(−) (r , t) =[

A
(−) (r , t)

]† 
so that .A(−) (r , t) contains terms that vary as .eiωt with .ω >  0 . 

For convenience we begin with a discrete set of global mode functions. This 

implicitly assumes that the field is confined to a finite volume, . V , of space. We 

expand the positive frequency component of the field in terms of a complete set of 

orthonormal spatial mode functions 

.A
(+) (r, t) =

∑

k 

ckuk (r)e
−i ωk t . (1.10) 

where the Fourier coefficients,. ck , are time independent for the free field. The vector-

valued mode functions .uk (r) then satisfy the wave equation 

.

(
∇2 + 

ωk 

c2

)
uk (r) = 0 , (1.11) 

in a volume .V that contains no refractive material. The mode functions are also 

required to satisfy the transversality condition following from the Coulomb gauge, 

.∇ ·  uk (r) = 0 . (1.12) 

The mode functions satisfy the conditions for orthonormality, 

.

∫

V 

u
∗
k (r)ul (r)dr = δkl . (1.13) 

The mode functions depend on the boundary conditions of the physical volume 

under consideration, e.g., periodic boundary conditions corresponding to travelling 

wave modes or conditions appropriate to reflecting walls which lead to standing 

waves. For example, the plane wave mode functions appropriate to a cubical volume 

of side length . L may be written as 

.ul (r) = L−3/2
ê
(λ)eik.r , (1.14) 

where.ê(λ) is the unit polarisation vector. The mode index. k represents several discrete 

indices: the polarisation index, .λ = 1, 2, and the three cartesian components of the 

wave vector . k, 

.kα = 
2π nα 

L 
. (1.15) 

where.α ∈ {x, y, z} and.nα = 0, ±1, ±2, . . .. The polarization vector.ê(λ) is required 

to be perpendicular to . k by the transversality condition (1.12). 

The vector potential may now be written in the form 

.A(r , t) =
∑

k

(
�

2ωkǫ0

)1/2 [
akuk (r)e

−i ωk t + a
† 
k u

∗
k (r)e

i ωk t
]

. (1.16) 
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The corresponding form for the electric field is 

.E(r , t) = i
∑

k

(
�ωk 

2ǫ0

)1/2 [
akuk (r)e

−i ωk t − a
† 
k u

∗
k (r)e

iωk t
]

. (1.17) 

The normalization factors have been chosen such that the amplitudes .ak and .a
† 
k are 

dimensionless. 

In classical electromagnetic theory these Fourier amplitudes are complex num-

bers. Quantisation of the electromagnetic field is accomplished by choosing .ak and 

.a
† 
k and to be mutually adjoint operators. Since photons are bosons the appropriate 

commutation relations to choose for the operators .ak and .a
† 
k are the boson canonical 

commutation relations 

.[ak , al ] = [a† k , a
† 
l ] =  0, [ak , a† l ] =  δkl . (1.18) 

The dynamical behaviour of the electric-field amplitudes may then be described by 

an ensemble of independent harmonic oscillators obeying the above commutation 

relations. The quantum states of each mode is a vector, .|ψk〉, in independent Hilbert 
spaces. The states of the entire field are then defined in the tensor product space of 

the Hilbert spaces for all of the modes. 

The Hamiltonian for the electromagnetic field is given by 

.H = 
1 

2

∫

V 

dr (ǫ0E
2 + μ0H

2) . (1.19) 

Substituting (1.17) for . E and the equivalent expression for .H and making use of the 

conditions (1.12) and (1.13), the Hamiltonian may be reduced to the form 

.H =
∑

k

�ωk

(
a
† 
k ak + 

1 

2

)
. (1.20) 

The corresponding classical description of the EM field can be given using exactly 

the same mode decomposition because the classical field satisfies a classical wave 

equation. In that case, the operators, .a, a† are simply complex variables .α, α∗ ∈ C. 

If the field is deterministic these take definite values fore each mode. If the field 

is stochastic these become complex valued random variables with some probability 

density function .P(α, α∗) on . C such that 

. 

1 

π

∫
d2α P(α, α∗) = 1 (1.21) 

where .d2α = dxdy  and .α = x + iy. In general no such description is possible in 

the quantum case. We discuss this in more detail in Chap. 3. 
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1.2 Number States 

The Hamiltonian (1.20) has the eigenvalues .�ωk (nk + 1/2) where .nk is a posi-

tive integer integer (.nk = 0, 1, 2, . . . ,  ∞). The eigenstates are written as .|nk〉 and 
are known as number or Fock states. They are eigenstates of the number operator 

. Nk = a
† 
k ak 

.a
† 
k ak |nk〉 =  nk |nk〉 . (1.22) 

The ground state or vacuum state of the field mode is defined by 

.ak |0〉 =  0 . (1.23) 

Thus the average energy of the vacuum state is 

.〈0|H |0〉 =  
1 

2

∑

k

�ωk . (1.24) 

Since there is no upper bound to the frequencies in the sum over electromagnetic 

field modes, the energy of the ground state is infinite, a conceptual difficulty for 

quantum field theory. However, since practical experiments measure a change in the 

total energy of the electromagnetic field the infinite zero-point energy does not lead 

to any divergence in practice. The operators.ak , a
† 
k are raising and lowering operators 

for the harmonic oscillator ladder of eigenstates. In terms of photons they represent 

the annihilation and creation of a photon with the wave vector . k and a polarisation 

.ê
(λ). Hence the terminology, annihilation and creation operators. Application of the 

creation and annihilation operators to the number states yield 

.ak |nk〉 =  
√
nk |nk − 1〉, a

† 
k |nk〉 =

√
nk + 1|nk + 1〉 . (1.25) 

The state vectors for the higher excited states may be obtained from the vacuum by 

successive application of the creation operator 

.|nk〉 =  
(a

† 
k )

nk 

√
nk ! 

|0〉 nk = 0, 1, 2, . . .  . (1.26) 

The number states are orthogonal 

.〈nk |nl〉 =  δkl , (1.27) 

and complete 

. 

∞∑

nk=0 

|nk〉〈nk | =  I , (1.28) 

where . I is the identity operator. Since the norm of these eigenvectors is finite, they 

form a complete set of basis vectors for a Hilbert space. 
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While the number states form a useful representation for high-energy photons, 

e.g. . γ rays where the number of photons is very small, they are not the most suitable 

representation for optical fields where the total number of photons is large. Most 

optical fields are either a superposition of number states (pure state) or a mixture 

of number states (mixed state). However recent experiments have demonstrated a 

number of methods to generate number states directly. One of these will be discussed 

in Sect. 14.2.1. 

1.3 Coherent States 

A more appropriate basis for many optical fields are the coherent states [ 2]. The 

coherent states have an indefinite number of photons which allows them to have a 

more precisely defined phase than a number state for which the phase is completely 

random. The product of the uncertainty in amplitude and phase for a coherent state is 

the minimum allowed by the uncertainty principle. In this sense they are the closest 

quantum mechanical states to a classical description of the field.We shall outline the 

basic properties of the coherent states below. These states are defined in terms of the 

unitary displacement operator, for a single mode 

.D(α) = eαa†−α∗a , (1.29) 

where . α is an arbitrary complex number. One easily verifies . D†(α) = D−1(α) = 

D(−α). The name ‘displacement operator’ follows from the relations 

.D†(α)aD(α) = a + α, D†(α)a† D(α) = a† + α∗ (1.30) 

Using the operator ordering theorem 

.eA+B = eAeBe−[A,B]/2 (1.31) 

which holds when .[A, [A, B]] = [B, [A, B]] = 0, we can write .D(α) in normally 

ordered form, 

.D(α) = e−|α|2/2eαa† e−α∗a , (1.32) 

or in anti-normally ordered form, 

.D(α) = e|α|2/2e−α∗aeαa† (1.33) 

Using this expression we can prove that the number state matrix elements of the 

displacement operator are [ 10] 
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.〈n|D(α)|m〉 =
√
m! 
n! e

−|α|2/2αn−m Ln−m 
m (|α|2) n ≥ m , (1.34) 

where .L 
p 
q (x) is the associated Lageurre polynomial. 

The coherent state .|α〉 is then defined by acting on the vacuum state 

.|α〉 =  D(α)|0〉 . (1.35) 

It then follows that the coherent states are eigenstates of the annihilation operator . a 

as 

.a|α〉 =  α|α〉 . (1.36) 

Note that as . a is a non-Hermitian operator its eigenvalues are not real. 

The displacement operator acting on a coherent state transforms it to another 

coherent state. To prove this we use (1.31) 

.D(α + β) = D(α)D(β)e−iℑ(αβ∗) . (1.37) 

Then we see that 

.D(β)|α〉 =  eiℑ(αβ∗)|α + β〉 . (1.38) 

The coherent states contain an indefinite number of photons. This may be made 

apparent by considering an expansion of the coherent states in the number states 

basis. Taking the scalar product of both sides of (1.36) with.|n〉, we find the recursion 
relation 

. 

√
n + 1〈n|α〉 =  α〈n|α〉 . (1.39) 

It follows that 

.〈n|α〉 =  
αn 

√
n!

〈0|α〉 (1.40) 

Expanding .|α〉 in the number basis 

.|α〉 =  

∞∑

n=0 

|n〉〈n|α〉 = 〈0|α〉
∞∑

n=0 

αn 

√
n! 

. (1.41) 

Using the displacement operator, 

.〈0|α〉 = 〈0|D(α)|0〉 =  e−|α|2/2 , (1.42) 

which ensures the normalisation of the coherent state. Thus 

.|α〉 =  e−|α|2/2 
∞∑

n=0 

αn 

√
n!

|n〉 . (1.43) 
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The probability distribution for photon number in a coherent state is 

.P(n) = 
|α|2n 
n! e−|α|2 (1.44) 

The mean and variance of this distribution as given by.n̄ = |α|2, 
n2 = n̄. The mean 

is equal to the variance. This is the defining characteristic of a Poisson distribution. 

The coherent states are not orthogonal. To see this we first note that 

.〈β|α〉 = 〈0|D†(β)D(α)|0〉 (1.45) 

Using (1.37) we see that 

.〈β|α〉 =  e−(|α|2+|β|2)/2+αβ∗ 

. (1.46) 

Thus 

.|〈β|α〉|2 = e−|α−β|2 . (1.47) 

Coherent states of different complex amplitudes thus become approximately orthog-

onal exponentially fast as the magnitude of the Euclidean distance between their 

complex amplitudes increases. 

The coherent states, while not orthogonal, do provide a resolution of identity 

. 

1 

π

∫
|α〉〈α|d2α = I (1.48) 

To see this we expand the coherent states in the number basis 

. 

1 

π

∫
|α〉〈α|d2α = 

1 

π 

∞∑

n,m=0

∫
d2 αα∗ m αne−|α|2 (1.49) 

Changing to circular polar coordinates to evaluate the integral 

.

∫
d2 αα∗ m αn =

∫ ∞ 

0 

dr rn+m+1e−r2
∫ 2π 

0 

dθ ei(n−m)θ (1.50) 

Using 

.

∫ 2π 

0 

dθ ei (n−m)θ = 2πδnm (1.51) 

and defining .ǫ = r2 we have 

. 

1 

π

∫
|α〉〈α|d2α = 

∞∑

n=0 

(n!)−1|n〉〈n|
∫ ∞ 

0 

dǫe−ǫǫn (1.52) 
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The integral over . ǫ is the definition of the Gamma function and is thus equal to . n! 
and thus 

. 

1 

π

∫
|α〉〈α|d2α = 

∞∑

n=0 

|n〉〈n| =  I (1.53) 

Coherent states are also known as minimum-uncertainy states. Define the canon-

ical operators .X1, X2—the quadrature phase operators—as 

.X1 = a + a†, X2 = −i(a − a†) (1.54) 

These obey the canonical commutation relations 

.[X1, X2] =  2i (1.55) 

These are equivalent to the canonical commutation relations for position . q and 

momentum .p and as in that case all physical states must satisfy the Heisenberg 

uncertainty relation 

.
X1.
X2 ≥ 1 (1.56) 

where .
A2 = 〈A2〉 − 〈A〉2 is the variance in . A. The coherent states satisfy the 
equality with .
X1 = 
X2 = 1. 

In the diagonal basis of .X1 defined by 

.X1 =
∫ ∞ 

−∞ 

dx  x |x〉〈x | (1.57) 

we have the following results 

.〈x |n〉 =  (2π)−1/4(2nn!)−1/2 Hn

(
x√
2

)
e−x2/4 (1.58) 

where .Hn(x) is the . n’th order Hermite polynomial. These are simply the energy 

eigenstates of a simple harmonic oscillator for a suitably scaled definition of position. 

The corresponding .X1-representation for the coherent state .|α〉 is 

.〈x |α〉 =  (2π)−1/4eiℑ(α)x−(x−2ℜ(α))2/4 (1.59) 

where .ℜ(α), ℑ(α) are the real and imaginary parts of . α respectively. 

The coherent states have a physical significance in that the field generated by a 

highly stabilized laser operating well above threshold can be described as a coherent 

state with slowly diffusing phase but fixed intensity (see Chap. 10). They form a 

useful basis for expanding the optical field in problems in laser physics and nonlinear 

optics. The coherence properties of light fields and the significance of the coherent 

states will be discussed in Chap. 2. 
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1.4 Squeezed States 

A general class of minimum-uncertainty states are known as squeezed states. In 

general, a squeezed state may have less noise in one quadrature than a coherent state. 

To satisfy the requirements of a minimum-uncertainty state the noise in the other 

quadrature is greater than that of a coherent state. In the case of pure squeezed states 

we require 

.
X1 =
1


X2 
(1.60) 

The coherent states are a particular member of this more general class of minimum 

uncertainty states with equal noise in both quadratures. 

There is a useful heuristic to picture minimum uncertainty states. We regard the 

non -zero values of the quadrature phase variances .
X j as indicative of intrinsic 

quantum fluctuations. In Chap. 3 we will see this is to be interpreted as fluctuations 

in the results of a class of measurements but for now we will simply imagine it 

in semi-classical terms. We picture a coherent state as a bivariate random variable 

.x1, x2 corresponding to the two quadrature phase operators .X1, X2. The mean is 

determined by the real and imaginary components of the complex amplitude and the 

noise by the standard deviation in the quadrature phase operators, .
X1,
X2. We  

picture this as an uncertainty circle centred on the real and imaginary components 

of the complex amplitude and with radius equal to unity. This heuristic picture is 

illustrated in Fig. 1.1. In terms of this picture the squeezed states are seen as replacing 

the uncertainty circle with an uncertainty ellipse. 

The squeezed vacuum states are defined by a unitary transformation of the vacuum 

.|0, ξ〉 =  S(ξ )|0〉 where 

.S(ξ ) = e(ξ ∗a2−ξ a† 2)/2 , (1.61) 

where .ξ = re−2iφ . More generally the squeezed states are defined as displaced 

squeezed vacuum states 

.|α, ξ〉 =  D(α)S(ξ )|0〉 . (1.62) 

Fig. 1.1 A pictorial ‘phase-space’ heuristic to capture features of a minimum uncertainty state a 

coherent state b squeezed state 
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We can calculate the moments of the squeezed states using the following canonical 

transformation 

. S†(ξ )aS(ξ ) = a cosh r − a†e−2i φ sinh r (1.63) 

This can be give a heuristic interpretation in phase space by first defining the rotated 

quadrature phase operators . Y1, Y2 

.Y1 + iY2 = (X1 + i X2)e
−iφ , (1.64) 

and then showing that 

.S†(ξ )(Y1 + iY2)S(ξ ) = Y1e
−r + iY2e

r . (1.65) 

This is indicated in Fig. 1.1 with the inclusion of a displacement. Thus the squeezed 

state has unequal uncertainties in the rotated quadrature phase operators .Y1 and 

.Y2 as seen in the error ellipse shown in Fig. 1.1. The principal axes of the ellipse 

lie along the .Y1 and .Y2 axes, and the principal radii are .
Y1 and. .
Y2. A more 

rigorous definition of these error ellipses as contours of the Wigner function is given in 

Chap. 3. 

The probability amplitude for the squeezed state.|α, r〉 (with.r ∈ R) in the diagonal 

basis of .X1 is defined by 

.ψ(x; α, r ) = 〈x |D(α)S(r )|0〉 (1.66) 

This may be evaluated by noting that 

.X1S(r)|x〉 =  xe−r S(r )|x〉 (1.67) 

The we find that 

.ψ(x; α, r) = (2π)−1/4er /2eiℑ(α)x−e2r (x−2ℜ(α))2/4 (1.68) 

The photon number distribution for a squeezed state is given by . P(n; α, r ) = 

|〈n|α, r〉|2 where 
.〈n|α, r〉 = 〈n|D(α)S(r )|0〉 (1.69) 

where for simplicity we have taken . ξ as real. Let us first consider the squeezed 

vacuum state for which . α = 0 

.P(n; r) = |〈n|S(r)|0〉|2 (1.70) 

We first make use of the normally ordered disentangling of the squeezing operator, 

.S(r) = e− tanh(r) a† 2/2e− ln(cosh(r))(a†a+1/2)etanh(r )a
2/2 (1.71) 
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Thus 

.〈n|S(r)|0〉 =  (cosh r)−1/2〈n|e− tanh(r) a† 2/2|0〉 (1.72) 

Clearly the probability of getting an odd photon number is zero, .Pr(n = odd) = 0. 

Using (1.25) we see that 

.〈n|S(r)|0〉 = [cosh(r )]−1/2 (− tanh(r)/2)n/2
√

(n)! 
(n/2)! (1.73) 

and so 

.P(n; r ) = cosh(r )−1 (tanh(r)/2)
n(n)! 

((n/2)!)2 n = 0, 2, 4, . . .  . (1.74) 

The amplitude .〈β|0, r〉 (which we call the Q-amplitude for reasons explained in 

Chap. 3) may be found by writing 

.〈β|0, r〉 =  

∞∑

n=0

〈β|n〉〈n|S(r)|0〉 (1.75) 

using (1.73, 1.40). we see that this can be evaluated as 

.〈β|0, r〉 = 1√
cosh(r ) 

exp

[
−|β|2 

2 
− 

tanh r β∗ 2 

2

]
(1.76) 

The photon amplitude for the displaced squeezed state can be found by using 

.〈β|α, r〉 =  

∞∑

n=0

〈β|n〉〈n|α, r〉 =  

∞∑

n=0 

βn 

√
n!
e−|β|2/2〈n|α, r〉 (1.77) 

Using (1.76), the left hand side may be written 

.〈β|α, r〉 = 1√
cosh r 

exp
[
−iℑ(αβ∗) − |β − α|2/2 − tanh r(β − α)2/2

]
(1.78) 

We may expand this in terms of .βne−|β|2/2 by making use of the generating function 

for complex Hermite polynomials, 

.e2zt−t2 = 

∞∑

n=0 

Hn(z) 

n! tn (1.79) 

the result is 

.〈n|α, r〉 =  (n! cosh r )−1/2λn/2e−|α|2/2−λα2 

Hn(z) (1.80) 
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Fig. 1.2 Photon number distribution for a squeezed state .|α, r〉. a Amplitude squeezing case; . α = 

5.0, r = 0.5 and .r = 1.0. b Phase squeezing case .α = 5.0, r = −0.5 and . r = −1.0 

where 

.z = 

√
λα + 

α∗ 

2
√

λ 

(1.81) 

and .λ = 
1 
2 
tanh r . Thus the photon number distribution for a squeezed state 

.P(n; α, r) = 
|λ|n 

n! cosh r e
−|α|2−λ(α2+α∗ 2)|Hn(z)|2 (1.82) 

This is equivalent to the form given by Yuen [ 6] for a slightly different definition of 

a squeezed state known as the two-photon coherent state. 

In Fig. 1.2 we plot the photon number distribution for a squeezed state . |α, r〉
with different coherent amplitudes, . α and squeezing parameter, . r . In viewing these 

distributions it is important to understand the relationship between the quadrature in 

phase with the coherent excitation and the squeezing of that quadrature. In the figures 

we always choose .r ∈ R and vary the phase of the coherent excitation. If we choose 

.α ∈ R real, then .r > 0 corresponds to amplitude-squeezing as the fluctuations in 

phase with the coherent amplitude quadrature are reduced, while .r < 0 corresponds 

to phase-squeezing as the fluctuations in quadrature phase to the coherent amplitude 

are reduced. Note the oscillations in the distribution for the amplitude squeezed case. 

This is a particular example of a general feature known as interference in phase-space 

[ 8]. 

1.5 Two-Mode Squeezed States 

Multimode squeezed states are important since several devices produce light which 

is correlated at the two frequencies .ω1 and .ω2. Usually these frequencies are sym-

metrically placed either side of a carrier frequency, .ωp so that .ω1 + ω2 = 2ωp. The 

squeezing exists not in the quadrature operators associated with each mode but in a 

collective quadrature operator for the modes. 
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The two-mode squeezed vacuum state is defined by 

.|0, ξ〉 =  S12(ξ )|0〉 (1.83) 

where .|0〉 = |0〉1 ⊗ |0〉2 is the joint vacuum state of the two modes and 

.S(ξ ) = eξ ∗a1a2−ξ a
† 
1a

† 
2 (1.84) 

One then finds that 

.S†(ξ )a1S(ξ ) = a1 cosh r − a
† 
2e

iθ sinh r (1.85) 

with .ξ = reiθ . The coherenty excited two-mode squeezed states are then obtained 

by displacing both modes independently, 

.|α1, α2, ξ〉 =  D1(α1)D2(α2)S12(ξ )|0〉 (1.86) 

The following moments follow 

.〈ak〉 =  αk (1.87) 

.〈a2 k 〉 =  α2 
k (1.88) 

.〈a1a2〉 =  α1α2 − eiθ sinh r cosh r (1.89) 

.〈a† k ak〉 =  |αk |2 + sinh2 r (1.90) 

the third of these equations implies that the two modes are correlated. As we are 

dealing with pure states this implies that the two modes are in entangled states, (see 

Chap. 14). 

In the case of the two-mode squeezed vacuum state we find that the variances in 

each mode are given by 

.V (Xk ) = V (Yk ) = 2 sinh2 r + 1 (1.91) 

These are certainly not minimum uncertainty states. Define the collective quadrature 

phase operators 

.X± =
1√
2 
(X1 ± X2) (1.92) 

.Y± =
1√
2 
(Y1 ± Y2) (1.93) 
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This is a canonical transformation and thus .X±, Y± obey the standard canonical 

commutation relations .[X+, Y+] = [X−, Y−] =  2i . We then find for the two-mode 

squeezed state that 

.〈X2
±〉 =  e∓2r cos2 θ/2 + e±2r sin2 θ/2 (1.94) 

.〈Y 2±〉 =  e±2r cos2 θ/2 + e∓2r sin2 θ/2 (1.95) 

.〈X+ X−〉 =  0 (1.96) 

.〈Y+Y−〉 =  0 (1.97) 

The last two equations tell us that the collective modes are uncorrelated and, as we 

are dealing with pure states, the joint modes are in separable states. Choosing . θ we 

see that the separable states are squeezed minimum uncertainty states. Thus the local 

modes are entangled while the collective modes are separable squeezed states. 

In the number basis the two-mode squeezed vacuum state can be found using the 

two-mode disentangling identity 

.e−r(a1a2−a
† 
1a

† 
2 ) = e− tanh ra

† 
1a

† 
2 e− ln cosh r(a

† 
1a1+a

† 
2a2+1)etanh ra1a2 (1.98) 

Then 

.S(r)|0〉 =  (1 − λ2)1/2 
∞∑

n=0 

(−λ)n|n, n〉 (1.99) 

where .λ = tanh r . Clearly this is an eigenstate of photon number difference . a
† 
1a1 − 

a
† 
2a2. We will make use of this in Chap. 14 when we discuss quantum teleportation. 

1.6 Phase Properties of the Field 

The definition of an Hermitian phase operator corresponding to the physical phase 

of the field has long been a problem. Initial attempts by Dirac led to a non-Hermitian 

operator with incorrect commutation relations [ 11]. This difficulty was addressed 

in the work of Susskind and Glogower [ 12]. Pegg and Barnett [ 13] showed how to 

construct a Hermitian phase operator. We will first discuss the Susskind–Glogower 

(SG) phase operator. 

Let .a, a† be the annihilation and creation operators for a single mode field. In 

analogy with the classical polar decomposition of a complex amplitude we define 

the SG phase operator, 

.êiφ = (aa†)−1/2a (1.100) 

The operator .êiφ has the number state expansion 

.êiφ = 

∞∑

n=0 

|n〉〈n + 1| . (1.101) 
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This is a displacement operator in the number basis. The eigenstates of .êi φ are the 

(unormalisable) states 

.|eiθ 〉 =  

∞∑

n=0 

einθ |n〉 for − π <  θ  ≤ π , (1.102) 

with eigenvalue .eiθ . Clearly these states are infinite energy states and, like position 

and momentum eginstates, do not lie in the Hilbert space of physical states. 

It is easy to verify that .êi φ is not unitary. In fact 

.[êiφ, êiφ
†] = |0〉〈0| . (1.103) 

An immediate consequence of this is that the SG phase eigenstates are not orthogonal 

.〈eiθ ′ |eiθ 〉 = 1 

1 − ei(θ −θ ′) 
, (1.104) 

although .|〈eiθ ′ |eiθ 〉|2 is very sharply peaked on .θ = θ ′. Nonetheless these states do 
provide a resolution of identity, 

. 

1 

2π

∫ −π 

π 

dθ |eiθ 〉〈|ei θ | =  1 (1.105) 

This immediately implies that 

.P(θ ) = tr[|eiθ 〉〈ei θ |ρ] (1.106) 

is valid probability distribution on .−π <  θ  ≤ π . In terms of quantum parameter 

estimation, the SG operator is optimal [ 14]. The fact that the SG phase operator is not 

Hermitian is an example of how non hermitian operators can describe certain kinds 

of quantum measurements (see Chap. 7). Pegg and Barnett [ 13] defined a Hermitian 

phase operator the measurement statistics of which converge, in an appropriate limit, 

to the phase distribution of the SG operator. The question arises; does this distribution 

correspond to the statistics of any physical phase measurement? Wiseman et al. [ 15] 

demonstrated an adaptive scheme that comes arbitrarily close. 

1.7 Cat States 

Advances in new quantum technologies now make it possible to create highly non 

classical states of the electromagntic field. A class of such states are known as cat 

state. These are defined as symmetric and anti-symmetric superpositions of coherent 

states; 

.|α±〉 =  N±(α)[|α〉 ± | −  α〉] (1.107) 
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where the normalisation constant is 

.N±(α) = 1√
2

(
1 ± e−2|α|2)

(1.108) 

It is easy to check that these states have opposite parity, that is to say, they are 

orthogonal eigenstates of the parity operator.� = eiπa
†a , so that the ‘even’ cat,.|α+〉, 

only has even number states while the ‘odd’ cat, .|α−〉 only has odd photon number. 

The two states are related by .a|α±〉 =  α|α∓〉. Thus the cat states are degenerate 
eigenstates of . a2, with eigenvalues .α2. The cat states have zero average amplitude 

.〈a〉 =  0 but .〈a2〉 =  α2. The average photon number; .〈a†a〉± = |α|2(tanh(|α|2)±1. 

Cat states are used in certain quantum information schemes in quantum optics, see 

Chap. 15. 

1.8 GKP States 

In Chap. 15 we will discuss quantum computing based on a type of oscillator state 

invented by Gottesmann, Kitaev and Preskill known as GKP states [16]. As originally 

defined these are not physical states, but they are well approximated by superpositions 

of displaced squeezed states. 

In terms of the continuous spectrum of the quadrature phase operators . X1, X2 

defined in (1.54), we define the translation operator . T1(p) = e−i pX1/2, T2(q) = 

eiq  X2/2 where . q is a real number. These two operators are canonically conjugate 

in that 

.T1(p)T2(q) = T2(q)T1( p)e
i pq/2 (1.109) 

Thus for .p = 2
√

π,  q = 2
√

π these operators commute and can be simultaneously 

diagonalised. When .T2(q) acts on a state .|ψ〉 it displaces it in the .X1 representation 

(see (1.57)) as 

.〈x |T2(q)|ψ〉 = 〈x + q|ψ〉 =  ψ(x + q) (1.110) 

The two orthogonal ideal GKP states as superpositions of two improper eigenstates 

of . X1 

.|0〉 =  

∞∑

k=−∞ 

T2(2k
√

π)|x = 0〉, (1.111) 

.|1〉 =  

∞∑

k=−∞ 

T2(2k
√

π))|x = 
√

π〉 (1.112) 

It is immediately apparent that these states are un-normalisable. Instead, the ideal 

encoding is approximated by a coherent superposition of Gaussian displaced squeezed 

vacuum states, Fig. 15.17. 
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.|0̃〉 =  N0 

∞∑

k=−∞ 

e−2π 
̃2k2 D(k
√

π)|r〉, (1.113) 

.|1̃〉 =  N1 

∞∑

k=−∞ 

e−2π 
̃2k2 D((k + 1/2)
√

π)|r〉, (1.114) 

where .D(k
√

π)  is the displacement operator defined in (1.29) and .
 = e−2r . In  

terms of the diagonal representation of .X1 these can be written 

.〈x |0̃〉 =  N0 

∞∑

k=−∞ 

e−2π 
̃2k2 (2π
)−1/4 exp

[
− 

(x − 2k
√

π)2 

2


]
(1.115) 

.〈x |1̃〉 =  N1 

∞∑

k=−∞ 

e−2π 
̃2k2 (2π
)−1/4 exp

[
− (x − (2k + 1)

√
π)2 

2


]
(1.116) 

where .
 = e−r . In cases of practical interest . 
̃ = 
. The .X2 representation, .〈y|s̃〉, 
is given by the Fourier transform of these functions. As this takes Gaussians to 

Gaussians we see that both functions are even functions of .x, y. Note that these 

state are invariant under the parity transformation, . �̂ = e−i2π a†a that transforms 

.X1 → −X1, X2 → −X2, these code states will always have an even number of 

photons. 

Konno et al. [ 17] gave the first experimental demonstration of GKP states in 

a travelling wave optical system using conditional homodyne measurements and 

feed-forward. The GKP states are an important code for continuous variable optical 

quantum computation. See Chap. 15. 

1.9 Multi-mode States of the Quantum Field 

We are not restricted to sources that excite a single mode of the electromagnetic 

field. We will begin by discussing quantum states of the multi-mode field, with plane 

polarisation, in terms of the (dimensionless) positive frequency operator, 

.E (+) (t, x) =
∫ ∞ 

0 

dω ̃a(ω)e−i(ωt−k.x) , (1.117) 

where .ã(ω), ã†(ω′) are bosonic annihilation/creation operators satisfying 

.[ã(ω), ã†(ω′)] =  δ(ω − ω′), (1.118) 

and .ω = c|k|. The negative frequency components are defined by . E (−) (t, x) = 

(E (+) (t, x))†. 
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We will assume that all modes are in the vacuum except for those propagating 

in the .+x direction with a carrier frequency centred on .ω = � and a frequency 

bandwidth .B much less than the carrier frequency. In that case we can change the 

frequency variable to .ω → ω − � and extend the lower limit of integration over 

the displaced variable to .−� → −∞. We will refer to this set of approximations 

collectively as the ‘quantum optics approximation’. We then only need consider those 

modes that contribute to the positive frequency operate defined as 

.a(t − x/c) =
∫ ∞ 

−∞ 

dω ã(ω)e−iω(t−x/c) . (1.119) 

This operator represents the positive frequency components of the EM field in the 

quantum optics approximation. In this form the operators .a(t) and .ã(ω) appear 

as Fourier transform pairs. In our units .a(t) has units of s.−1/2 which ensures that 

.〈a†(t)a(t)〉 has units of a rate. In what follows we will assume the detector is located 

at .x = 0. 

1.9.1 Coherent Pulses 

Multimode coherent states are defined at .x, t = 0 by quantum state functional of 

complex valued functions .α̃(ω), 

.|α̃(ω)〉 =  D( ̃α(ω))|0〉 (1.120) 

We then find that .〈a(t)〉 =  α(t) and .〈a†(t)a(t)〉 = |α(t)|2 with 

.α(t) =
∫ ∞ 

−∞ 

dω ̃α(ω)e−i ωt , (1.121) 

The coherent amplitude of the state is determined by a Fourier transform. This is 

what one would expect for a transform limited classical field. In such cases there is 

no additional phase noise. Here we see that transform limited states are necessarily 

pure states. The state contains no more phase noise than required by the uncertainty 

principle. 

1.9.2 Photon Number Pulses 

We now define an .N -photon (pure) state as a superposition of a single excitation 

over many frequencies [ 24], 

.|Nξ 〉 = 1√
N !

[∫ ∞ 

−∞ 

dω ξ̃ (ω)ã†(ω)

]N 

|0〉 . (1.122) 
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Here .ξ̃ (ω)  is the probability amplitude that there is a single photon in a frequency 

band between . ω and .ω + dω. Normalisation of the state requires that 

.

∫ ∞ 

−∞ 

dω|ξ̃ (ω)|2 =
∫ ∞ 

−∞ 

dt |ξ(t)|2 = 1 (1.123) 

where 

.ξ(t) =
∫ ∞ 

−∞ 

dω e−iωt ξ̃ (ω)  . (1.124) 

The average field amplitude of a single photon state is zero, 

.〈1|a(t)|1〉 =  0 . (1.125) 

We can interpret this result as an indication of the random optical phase of a photon 

number eigenstate. A phase dependent measurement on the single photon state, such 

as homodyne detection, would give a null signal on average. The quantum coherent 

nature of a single photon is revealed when we consider the probability per unit time 

to detect the photon on a photon counter. 

In the case of the single photon state (.N = 1) this becomes 

.n(t) = 〈a†(t)a(t)〉 = |ξ(t)|2 , (1.126) 

The fact that.n(t) appears as the modulus square of a single, complex valued function 

in (1.126) is a reflection of the underlying purity of the single photon state. In optical 

terms we would say that the pulse is ‘transform limited’ although we need to bear in 

mind that this is highly non classical state with an average field amplitude of zero. 

A single photon source is a highly non classical source of light as opposed to 

the typical semiclassical sources of a laser and thermal radiation. The key signature 

of a true pure-state single photon source is provided by Hong-Ou-Mandel (HOM) 

interference [ 22,23]. 

HOM interference is a fourth order interference effect. If two identical single 

photons arrive on a .50/50 beam-splitter the probability to detect a single photon 

at each of the two output ports—a coincidence—is zero. This is because there are 

two indistinguishable ways this event can occur: both photons are reflected or both 

photons are transmitted and the probability amplitudes for each of these paths cancel 

exactly in the ideal case. If we introduce a time delay between the two photon pulses, 

the probability to detect a coincidence drops from a value of .0.5 to near zero as the 

time delay is reduced to zero. 

In Fig. 1.3, we show a HOM scheme with two input fields with positive frequency 

components .ain(t), bin(t) and two output fields determined by the frequency space 

unitary transformation 

.ãout (ω) = 
1√
2 
( ̃ain(ω) + b̃in(ω)) (1.127) 

.ãout (ω)(t) = 
1√
2 
( ̃ain(ω) − b̃in(ω)) . (1.128) 
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Fig. 1.3 A scheme for a Hong-Ou-Mandel interference experiment. A beam splitter couples two 

input field modes to two output field modes. The input field modes are prepared in identical single 

photon pulses and a variable time delay . τ is introduced. Detectors placed in the path of the output 

field modes show a suppression of coincidence events when the delay time is zero 

The change in sign of the second equation here is an indication of the time reversal 

invariance of an ideal beam splitter. Assume that at .t = 0 the a-mode is prepared in 

the single photon state with amplitude function .ξa(t) while the b-mode is prepared 

in a single photon state at .t = τ with amplitude function .ξb(t − τ). To be specific 

we will choose, 

.ξ(t) =
{√

γ e−γ t/2 t ≥ 0 

0 t < 0 
. (1.129) 

The joint probability to count one photon in output mode-a and one photon in output 

mode-b is defined by 

.Pab =
∫ ∞ 

0

∫ ∞ 

0

〈a† out(t)b
† 
out(t

′)bout(t
′)aout(t)〉dtdt ′ . (1.130) 

In this case we find that this is a function of . τ and is given by 

.Pab(τ ) = 
1 

2

(
1 − e−γ |τ |

)
. (1.131) 

A good example of a single photon source which exhibits both a suppression 

of second order correlation at zero time and good HOM interference visibility was 

demonstrated by the group of Rempe [ 19] in Garching and also by the group of Kuhn 

at Oxford [ 20]. This system is based on a Raman two photon transition in a three 

level system inside an optical cavity [ 21]. One transition is driven by a strong time 

dependent laser and the other is coupled to a cavity mode. A control pulse transforms 

the atomic system from the ground to an excited state while simultaneously exciting 

one photon in a cavity mode. The time taken to excite the cavity photon is determined 

primarily by the duration of the control pulse and can be short compared to the cavity 
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decay time. The photon is then emitted from the cavity via the usual process of cavity 

decay. Under these conditions a good approximation to the single photon amplitude 

function is the exponential in (1.129). The experiments of Rempe [ 19] and Kuhn [ 20] 

verified the temporal shape of their photon amplitudes and phases in detection-time 

resolved HOM and quantum homodyne experiments. 

1.9.3 Pair Creation 

Spontaneous parametric down conversion (see Chap. 8) is a multi-photon process 

that takes place in certain crystals with a significant second order optical non linearity. 

In this process a continuous wave or pulsed laser injects a coherent pump field into 

the non linear crystal. A single pump photon with wave vector .kp is absorbed at 

random times and a pair of photons called the signal (s) and idler (i) are created 

such that .kp = ks + ki and .ωp = ωi + ωs . These ensure momentum and energy 

conservation. 

We can write the two-photon state of the signal and idler as 

.|2〉si  =
∫ ∞ 

−∞ 

dω1

∫ ∞ 

−∞ 

dω2 f̃ (ω1, ω2)a
† 
s (ω1)a

† 
i (ω2)|0〉 (1.132) 

Normalisation requires 

.

∫ ∞ 

−∞ 

dω1dω2 | f̃ (ω1, ω2)|2 = 1 (1.133) 

This state is entangled if . f̃ (ω1, ω2) �= f̃1(ω1) f̃2(ω2). The nature of entanglement 

can be seen using the Schmidt decomposition [ 24] 

. f̃ (ω1, ω2) =
∑

j

√
λ j g̃ j (ω1) ̃h j (ω2) (1.134) 

where .g̃ j , h̃ j are an orthonormal set of mode functions and .

∑
j λ j = 1. 

The two-photon detection rate is 

. r(t, τ  )  = 〈2|a† s (t)as (t)a
† 
i (t + τ)ai (t + τ)|2〉 =

∣∣∣∣∣∣
∑

j

√
λ j g j (t)h j (t + τ)

∣∣∣∣∣∣

2 

(1.135) 

where.g(t), h(t) are the Fourier transforms of.g̃(ω), h̃(ω). In the temporal domain we 

see the entanglement is represented directly as correlations between pairs of temporal 

modes. In many experiments only a few temporal mode pairs may be required. 



References 23 

Problems 

1.1 Derive the disentangling relation in (1.71). Hint: write 

.er(a
2−a† 2)/2 = e f+(r )a† 2  

e fz (r )a
†ae f−(r)a2 (1.136) 

and differentiate both sides with respect to . r to obtain differential equations for 

. f±(r), fz(r ). 

1.2 Show that the mean and variance of a squeezed vacuum state are . n̄ = sinh2 r 

and .V[n] =  2 cosh2 r sinh2 r . 

1.3 Calculate the SG phase distribution for; number states, coherent states and 

squeezed states. 

1.4 Calculate the mean and variance of the photon number in the two approximate 

GKP states, (1.115, 1.116) with . 
̃ = 
. 

1.5 Derive the result in (1.135). 
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2Quantum Theory of Optical Coherence 

Abstract 

In this chapter we introduce measurements via a simple model based on photo-

electric detection. Ultimately, all experimental results can be expressed in terms of 

correlation functions evaluated at different spacetime points. We use this model 

to discuss how optical coherence is determined by quantum states of light and 

help us describe interference experiments. 

2.1 Sources and Detectors 

Non-relativistic quantum mechanics makes contact with reality through the Born 

rule, a mathematical specification for how quantum states determine the statistics 

of idealised measurement results. The same is true of quantum field theory where 

measurement takes place in detectors and states are prepared by sources. Quantum 

field theory, as usually presented, has little to say about sources and detectors, or 

measurement for that matter. In the case of high energy fields one is often concerned 

with sources that produce a few excitations and detectors that respond to small 

numbers of excitations. In quantum optics, we are concerned with the quantised 

electromagnetic field and sources and detectors that respond to very many excitations. 

In both cases, sources and detectors are comprised of quantised matter fields, a subject 

we will postpone to Chap. 9. 

2.2 Photon Counting 

The elementary measurement device in quantum optics involves the absorption of 

a photon. This has important consequences since this type of counter is insensitive 

to spontaneous emission. In such a device, measurement takes place by absorbing 

a photon and thus is sensitive to the positive frequency components field . E (+) (r, t) 

at the space-time point .(r, t). This is nothing like the usual ‘projection postulate’ 
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description of measurement, as when one photon is counted the only thing we can 

say for sure is that there is one photon less in the field. We follow the treatment of 

Glauber [ 1]. 

The transition probability per unit time (i.e. the detection rate) that the detector 

absorbs a photon at the position of the detector,. r, between. t and.t + dt  is proportional 

to 

.T f i  =
∣

∣

∣
〈 f |E (+) (r, t)|i〉

∣

∣

∣

2 
(2.1) 

where .|i〉, | f 〉 are the initial and final states of the field. We only care about the final 

state of the detector as it ultimately records the absorption. In order to obtain the 

total detection rate we sum over all states of the field which may be reached from 

the initial state by an absorption process. We can extend the sum over a complete 

set of final states since the states which cannot be reached (e.g., final states which 

differ from initial states by two or more photons) will not contribute to the result 

since they are orthogonal to the state with one photon less than the initial state. The 

total detection rate is 

.I (r, t) =
∑

f

〈i |E (−) (r, t)| f 〉〈 f |E (+) (r, t)|i〉 (2.2) 

. = 〈i |E (−) (r, t)E (+) (r, t)|i〉 (2.3) 

where we have used the completeness relation .
∑

f | f 〉〈 f | =  1. From the photo-

electric effect we expect the rate of absorption to be proportional to the intensity of 

the field, so we define .I (r, t) as the measured intensity of the field at .(r, t). If the  

field is in a mixed state, . ρ the expression for .I (r, t) becomes 

.I (x) = tr
[

E (−) (x)E (+) (x)ρ
]

, (2.4) 

where we have defined the spacetime point .x = (r, t). The normal ordering of the 

operators (that is, all annihilation operators are to the right of all creation operators) 

yields zero intensity for the vacuum state .ρ = |0〉〈0|. This is a consequence of using 
a detector based on absorption. Had we chosen a detector working on a stimulated 

emission principle, problems would arise with vacuum fluctuations. 

What would we expect the classical analogue of .I (x) to be? In Chap. 1, we saw  

that the quantum field resulted when we replaced the classical positive and negative 

frequency components of the field by operators. Thus we might expect that the mea-

sured intensity for a the classical field to be .I (x) = E
(−) (x)E(+) (x) = |E(+) (x)|2. If  

the field was a single plane-wave mode this is a constant in time and space. Strictly 

speaking this assumes that the classical field is completely deterministic and not 

subject to amplitude and phase fluctuations. In that case we would replace . E(±) (x) 

by a stochastic process and average over the noise to get the measured intensity. 

We can define a two-point correlation function for the field by generalising (2.4), 

.G(1) (x, x ′) = tr
[

E (−) (x)E (+) (x ′)ρ
]

. (2.5) 
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This is a first-order correlation function. The physical interpretation of this in terms 

of a measurement will be treated in Chap. 7. It is based on measurements of the 

field amplitude rather than intensity as in direct photon counting. Field amplitude 

measurements are phase-dependent measurements unlike photon counting. As it is a 

measurement of the field amplitude it can be used to account for optical interference 

experiments. As we will see the first-order correlation function of the radiation field 

is sufficient to account for classical interference experiments. 

The measurement of .g(2) (t; τ)  by Hanbury Brown and Twiss in 1956 signalled 

the birth of quantum optics [ 2, 3]. In this experiment an intensity, or photon number, 

correlation function for light was measured for the first time. To describe experiments 

involving intensity correlations, it is necessary to define higher-order correlation 

functions. The the n’th-order correlation function of the electromagnetic field is 

defined by 

.G(n) (x1, . . . ,  xn, xn+1, . . . ,  x2n) = tr
[

ρ E (−) (x1) . . .  E (−) (xn) (2.6) 

× E (+) (xn+1) . . .  E (+) (2n)
]

Such an expression follows from a consideration of an n-atom photon detector [ 1]. 

2.3 Correlation Functions 

A number of interesting inequalities can be derived from the inequality 

.tr
[

ρ A† A
]

≥ 0 , (2.7) 

which follows from the non-negativity of .A† A for any operator . A. Choosing . A = 

E (+) (x) gives 

.G(1) (x, x) ≥ 0 . (2.8) 

In general taking .A = E (+) (xn) . . .  E (+) (x1) yields 

.

∑

i j  

λ∗
i λ j G

(1) (xi , x j ) ≥ 0 . (2.9) 

Thus the set of correlation functions .G(1) (xi , x j ) forms a matrix of coefficients for 

a positive definite quadratic form. Such a matrix has a positive determinant, i.e., 

.det
[

G(1) (xi , x j )
]

≥ 0 . (2.10) 

For .n = 1 this is (2.8). For .n = 2 we find 

.G(1) (x1, x1).G
(1) (x2, x2) ≥

∣

∣

∣
G(1) (x1, x2)

∣

∣

∣

2 
, (2.11) 
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which is the Schwartz inequality. Choosing 

.A = λ1 E
(+) (x1) . . .  E (+) (xn) + λ2 E

(+) (xn+1) . . .  E (+) (x2n) (2.12) 

we find 

.G(n) (x1, . . . ,  xn, xn, . . . ,  x1) .  G(n) (xn+1, . . . ,  x2n, x2n, . . . ,  xn+1) (2.13) 

≥
∣

∣

∣
G(n) (x1, . . . ,  xn, xn+1, . . . ,  x2n)

∣

∣

∣

2 

If we have two distinguishable fields (say, by direction of propagation) we take 

.A = λ1 E
(+) 
1 (x)E

(+) 
2 (x ′) + λ2 E

(+) 
2 (x)E

(+) 
2 (x ′) (2.14) 

with .x = (r, 0) and .x ′ = (r, t). Then 

.G2 
11(0)G

(2) 
22 (0) ≥

∣

∣

∣
G

(2) 
12 (t)

∣

∣

∣

2 
, (2.15) 

where 

.G
(2) 
12 (t) = tr

[

ρ E
(−) 
i (x)E

(−) 
i (x ′)E (+) 

i (x ′)E (+) 
i (x)

]

. (2.16) 

Note that .G
(2) 
i i  is time independent. 

An inequality closely related to (2.15) may be derived by choosing 

.A = λ1 E
(−) 
1 (x)E

(+) 
2 (x) + λ2 E

(−) 
2 (x)E

(+) 
2 (x) . (2.17) 

This leads to 

.

∣

∣

∣
〈E(−) 

1 (x)E
(+) 
1 (x)E

(+) 
2 (x)E

(−) 
2 (x)|

∣

∣

∣

2 
(2.18) 

≤ 〈
[

E
(−) 
1 (x)E

(+) 
1 (x)

]2
〉〈

[

E
(−) 
2 (x)E

(+) 
2 (x)|

]2
〉 . 

2.4 Correlation Functions and Optical Coherence 

Classical optical interference experiments correspond to a measurement of the first 

order correlation function. We shall consider Young’s interference experiment as 

a measurement of the first-order correlation function of the field and show how a 

definition of first-order optical coherence arises from considerations of the fringe 

visibility. 
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Fig. 2.1 Schematic representation of Young’s interference experiment 

A schematic sketch of Young’s interference experiment is depicted in Fig. 2.1. 

The field incident on the screen at position r and time t is the superposition of the 

fields at the two pin holes, 

.E (+) (r, t) = E
(+) 
1 (ri , t) + E

(+) 
2 (r, t) , (2.19) 

where .E
(+) 
i (r, t) is the field produced by pinhole-. i at the screen with 

.E
(+) 
i (r, t) = E

(+) 
i (r, t − si /c) 

ei(k−ω/c)si 

si 
, (2.20) 

where .si = |ri − r| and .E (+) 
i (ri , t − si /c) is the field at the . i’th pinhole. For a 

spherical wave .k − ω/c = 0, thus (2.19) becomes 

.E (+) (r, t) = 
E

(+) 
1 (r1, t − s1/c) 

s1 
+ 

E
(+) 
2 (r2, t − s2/c) 

s2 
. (2.21) 

In the experiment we expect .s1 ≈ s2 ≈ R, so  

.E (+) (r, t) = 
1 

R

(

E
(+) 
1 (x1) + E

(+) 
2 (x2)

)

, (2.22) 

where 

.xi = (ri , t − si /c) . (2.23) 

The intensity observed on the screen is proportional to 

.I (r, t) = tr
[

ρ E (−) (r, t)E (+) (r, t)
]

. (2.24) 
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Using (2.19) we find that 

.I (x1, x2) = G(1) (x1, x1) + G(1) (x2, x2) + 2ℜ
[

G(1) (x1, x2)
]

, (2.25) 

and the .R−2 factor is absorbed into a normalisation constant. The first two terms 

on the right-hand side are the intensities from each pinhole in the absence of the 

other. The third term is the interference term. The correlation function for .x1 
= x2, 

in general takes on complex values. Writing this as 

.G(1) (x1, x2) =
∣

∣

∣
G(1) (x1, x2)

∣

∣

∣
ei�(x1,x2) , (2.26) 

we find 

. I (x1, x2) = G(1) (x1, x1) + G(1) (x2, x2) + 2

∣

∣

∣
G(1) (x1, x2)

∣

∣

∣
cos(�(x1, x2)) , 

(2.27) 

The interference fringes arise from the oscillations of the cosine term. The envelope 

of the fringes is described by the correlation function .G(1) (x1, x2). 

2.5 First-Order Optical Coherence 

The idea of coherence in optics was first associated with the possibility of producing 

interference fringes when two fields are superposed. The highest degree of optical 

coherence was associated with a field which exhibits fringes with maximum visibility. 

If.G(1) (x1, x2) was zero there would be no fringes and the fields are then described as 

incoherent. Thus the larger is.G(1) (x1, x2) the more coherent the field. The magnitude 

of .|G(1) (x1, x2)| is limited by the relation 

.

∣

∣

∣
G(1) (x1, x2)

∣

∣

∣
≤

[

G(1) (x1, x1)G
(1) (x2, x2)

]1/2 
. (2.28) 

The best possible fringe contrast is given by the equality sign. Thus the necessary 

condition for full coherence is 

.

∣

∣

∣
G(1) (x1, x2)

∣

∣

∣
=

[

G(1) (x1, x1)G
(1) (x2, x2)

]

. (2.29) 

Introducing the normalized first-order correlation function 

.g(1) (x1, x2) =
G(1) (x1, x2)

[

G(1)(x1, x1)G(1)(x2, x2)
]1/2

(2.30) 

the condition for maximum fringe contrast is 

.g(1) (x1, x2) = 1 , (2.31) 
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or 

.g(1) (x1, x2) = ei�(x1,x2) . (2.32) 

The visibility of the fringes is defined by 

.V = 
Imax − Imin 

Imax + Imin 

(2.33) 

This may be written as 

.V =
∣

∣

∣
g(1)

∣

∣

∣

2
√
I1 I2 

I1 + I2 
. (2.34) 

If the fields incident on each pinhole have equal intensities the fringe visibility is equal 

to .|g(1)|. Thus the condition for first-order optical coherence .|g(1)| =  1 corresponds 

to the condition for maximum fringe visibility. 

A more general definition of first-order coherence of the field E(x) is that the 

first-order correlation function factorizes 

.G(1) (x1, x2) = ε(−) (x1)ε
(+) (x2) (2.35) 

It is readily seen that this is equivalent to the condition for first-order optical coherence 

given by (2.31). It is clear that the coherent states are an example of such a field. 

It is this coherence property of the coherent states which gave them their name. in 

general, coherent states of the field lead to the factorisation 

. G(n) (x1, . . .  xn, xn+1 . . . ,  x2n) = ε(−) (x1) . . . ε(−) (xn)ε
(+) (xn+1) . . . ε(+) (x2n) 

(2.36) 

Photon interference experiments of the kind typified by Young’s interference 

experiment and Michelson’s interferometer played a central role in early discussions 

of the dual wave and particle nature of light. These experiments detect the interfer-

ence pattern resulting from the superposition of two light beams. Classical theory 

based on the wave nature of light readily explained the observed interference pattern. 

The quantum-mechanical explanation is based on the interference of the probability 

amplitudes for the photon to take either of two paths. We shall demonstrate how 

interference occurs even for a one photon field. For full details of the classical theory 

and experimental arrangements the reader is referred to the classic text of Born and 

Wolf [ 7]. 

We consider an interference experiment of the type performed by Young which 

consists of light from a monochromatic point source. S incident on a screen possessing 

two pinholes .P1 and .P2 which are equidistant from . S (see Fig. 2.1). The pinholes 

act as secondary monochromatic point sources which are in phase and the beams 

from them are superimposed on a screen at position . r and time . t . In this region an 

interference pattern is formed. To avoid calculating the diffraction pattern for the 

pinhole, we assume their dimensions are of the order of the wavelength of light in 

which case they effectively act as sources for single modes of spherical radiation 
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in keeping with Huygen’s principle. The appropriate mode functions for spherical 

radiation are 

.uk (r) =
√

1 

4π L 

eik.r 

r 
êk , (2.37) 

where . L is the radius of the normalization volume, and .êk is the unit polarization 

vector. 

The field detected on the screen at position . r and time . t is then the sum of the two 

spherical modes emitted by the two pinholes, 

.E (+) (r, t) = f (r, t)(a1e
iks1 + a2e

iks2 ) (2.38) 

with 

. f (r, t) = i
√

�ω/2 
êk√
4π LR  

e−i ωt , (2.39) 

where .s1 and .s2 are the distances of the pinholes .P1 and .P2 to the point on the screen, 

and we have set.s1 ≈ s2 = R in the denominator of the mode functions. The intensity 

on the screen is then given by 

.I (r, t) = η
(

tr(ρa
† 
1a1) + tr(ρa

† 
2a2) + 2|tr(ρa† 1a2)| cos


)

(2.40) 

where 

. tr(ρa
† 
1a2) =

∣

∣

∣
tr(ρa

† 
1a2)

∣

∣

∣
ei
, 

η = |  f (r, t)|2,

 = k(s1 − s2) .  

This expression exhibits the typical interference fringes with the maximum of inten-

sity occurring at .k(s1 − s2) = 2nπ with . n an integer. The maximum intensity of the 

fringes falls off as one moves the point of observation further from the central line 

by the .R−2. 

We shall evaluate the intensity for fields which may be generated by a single mode 

excitation and hence have first-order coherence. A general representation of such a 

field is 

.|ψ〉 =  g(b†)|0〉 (2.41) 

where .|0〉 denotes the vacuum state of the field and .b† is the creation operator for a 

single mode. The operator .b† may be expressed as a linear combination of .a
† 
1 and 

.a
† 
2 as 

.b = 
1√
2 
(a1 + a2) , (2.42) 
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where we have assumed equal intensities through each slit. We shall now consider 

as a special case the field with only one photon incident on the pinholes, i.e., 

.|ψ〉 =  b†|0〉 =  
1√
2 
(|1, 0〉 + |0, 1〉) (2.43) 

where .|n1, n2〉, means that there are .n1 photons in mode .k1 and .n2 photons in mode 

. k2. This state of the field reflects the fact that we don’t know which pinhole the 

photon goes through. From (2.40) this yields the following expression for the mean 

intensity on the screen 

.I (r, t) = η(1 + cos
) (2.44) 

It is clear from this equation that an interference pattern may be built up from a 

succession of one-photon interference fringes. 

The quantum explanation for the interference pattern was first put forward by 

Dirac [ 8] in his classic text on quantum mechanics. There he argued that the observed 

intensity pattern results from interference between the probability amplitudes of a 

single photon to take either of two possible paths. The crux of the quantum mechanical 

explanation is that the wave function gives information about the probability of one 

photon being in a particular place and not the probable number of photons in that 

place. Dirac pointed out that the interference between the two beams does not arise 

because photons of one beam sometimes annihilate photons from the other, and 

sometimes combine to produce four photons. “This would contradict the conservation 

of energy. The new theory which connects the wave functions with probabilities for 

one photon gets over the difficulty by making each photon go partly into each of two 

components. Each photon then interferes only with itself. Interference between two 

different photons never occurs”. 

An early experiment to test if interference would result from a single photon was 

performed by Taylor [ 9] in 1905. In this experiment the intensity of a thermal source 

was so low that on average only one photon was incident on the slits at a time. The 

photons were detected on a photographic plate so that the detection time was very 

large. Interference fringes were observed in this experiment. This experiment did not 

definitively show that the interference fringes resulted from a single photon since 

the statistical distribution of photons meant that sometimes two photons could be 

incident on the slits. A definitive experiment was conducted by Grangier et al. [ 10] 

using a two-photon cascade as a source. A coincidence technique which detected 

one photon of the pair enabled them to prepare a one photon source. 

Single photon interference in a two aperture device is the basis for various sugges-

tions for a quantum version of a Michelson stellar interferometer first used to measure 

stellar diameters. The interference pattern is sensitive to source intensity variations 

on the scale of .δθ ∼ λ/B where . λ is the wavelength and . B is the separation between 

the sub-apertures. If one can combine the light collected by the separate telescopes 

along optical paths one can achieve a Young’s double-slit experiment. However loss 

in the optical channels (typically fibres) dramatically limits the efficiency of this 
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so-called direct detection method. Nonetheless this approach outperforms hetero-

dyne detection with classical communication for estimating the mutual coherence of 

bipartite thermal light when the average photon flux is low [ 11]. 

2.6 Coherent Field 

We consider a coherent field as generated by an ideal laser incident on the pinholes. 

The state for this coherent field is a tensor product of two single mode coherent 

states, 

.|α1, α2〉 = |α1〉 ⊗ |α2〉 , (2.45) 

representing two independent light beams. Such a state is easily produced by illumi-

nating the two-slit experiment with a coherent field so that 

.|α1, α2〉 =  eαb†−α∗b|0〉 = |α/
√
2, α/

√
2〉 (2.46) 

where .b = 
1√
2 
(a1 + a2). The intensity pattern produced by this coherent field is 

.I (r, t) = η2(|α|2 + |α|2 cos
) (2.47) 

This example demonstrates the possibility of obtaining interference between inde-

pendent light beams. Experimentally, this requires that the phase relation between 

the two beams be slowly varying or else the fringe pattern will be washed out. Such 

experiments were performed by Pfleegor and Mandel [ 17]. Interference between 

independent light beams is, however, only possible for certain states of the radia-

tion field, for example, the coherent states as demonstrated above. Interference is 

not generally obtained from independent light beams. For example, it is easily ver-

ified that for two independent light beams prepared in Fock states, .|ψ〉 = |n1〉|n2〉, 
yields a zero first order correlation and there is no interference. The Fock states have 

completely random phase. 

The analysis leading to (2.44) bears out Dirac’s argument that the interference 

fringes may be produced by a series of one photon experiments. However, Young’s 

interference fringes may perfectly well be explained by the interference of classical 

waves. Experiments of this kind which measure the first-order correlation functions 

of the electromagnetic field do not distinguish between the quantum and classical 

theories of light. 

2.7 Photon Correlation Measurements 

The first experiment performed outside the domain of first order coherence was 

the intensity correlation experiment of Hanbury-Brown and Twiss [ 2]. Although 

the original experiment involved the analogue correlation of photo-currents, later 

experiments used photon counters and digital correlations and were truly photon 



2.7 Photon Correlation Measurements 35 

correlation measurements. In essence these experiments measure the joint photo-

count probability of detecting the arrival of a photon at time . t and another photon at 

time .t + τ (regardless of how many are detected between these times). This may be 

written as an intensity or photon-number correlation function. 

Using the quantum detection theory developed by Glauber, the measured quan-

tity is proportional to .〈E (−) (t)E (−) (t + τ)E (+) (t + τ)E (+) (t)〉. In many cases the 

probability of this joint detection event is stationary, which means it is independent 

of the starting time. t after initial transients in the source have died out. We then define 

the correlation function, 

.G(2) (τ ) = lim 
t→∞

〈E (−) (t)E (−) (t + τ)E (+) (t + τ)E (+) (t)〉 (2.48) 

where .τ >  0. The operator inside the average is in normal ordered form. The nor-

malised second order correlation function is defined by 

.g(2) (τ ) = 
G(2) (τ )

∣

∣G(1)(0)
∣

∣

2
(2.49) 

In the case of a field prepared in a coherent state we find 

.G(2) (τ ) = ε∗(0)ε∗(τ )ε(0)ε(τ ) =
∣

∣

∣
G(1) (0)

∣

∣

∣

2 
(2.50) 

where .ε(t) is the complex amplitude of the positive frequency components of the 

field 

.ε(t) = i

√

�ω 

2ǫ0V 
ε e−iωt (2.51) 

For such a field .g(2) (τ ) = 1. Such a field is said to possess second order coherence. 

This is a classical field state. 

If the classical field has fluctuating complex amplitudes, described by a probability 

density .P(ε), then 

.G(2) (τ ) =
∫

d2ε P(ε)ε∗(0)ε∗(τ )ε(0)ε(τ ) (2.52) 

In the case of zero time delay .τ = 0, we see that 

.g(2) (0) =

∫

d2ε P(ε)
(

|ε|2 − |ε|2
)2

(

|ε|2
)2

(2.53) 
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where 

.|ε|2 =
∫

d2ε P(ε) |ε|2 (2.54) 

and it is clear that .g(2) (0) ≥ 1. 

If the distribution .P(ε) is a Gaussian with zero mean amplitude we can use the 

factorisation properties of the moments to show that 

.g(2) (τ ) = 1 +
∣

∣

∣
g(1) (τ )

∣

∣

∣

2 
(2.55) 

which is an example of the Siegert relation. There are two cases of particular phys-

ical interest. The noise power spectrum for a stochastically fluctuating amplitude is 

defined as [ 14] 

.S(ω) =
∫ ∞ 

−∞ 

dτ e−iωτ G(1) (τ ) (2.56) 

A field with a Lorentzian spectrum has 

.g(2) (τ ) = 1 + e−γ |τ | (2.57) 

while a field with a Gaussian spectrum (thermal light) has 

.g(2) (τ ) = 1 + e−γ |τ |2 (2.58) 

where . γ is the line-width. 

For a values of .τ >>  τc = γ 
−1, the correlation time of the light, the correlation 

function factorizes and .g(2) (τ ) → 1. The increased value of .g(2) (τ ) for .τ <  τc for 

Gaussian fluctuations (chaotic light) over coherent light is due to the increased inten-

sity fluctuations in the chaotic light field. (Here “chaotic” is not necessarily “ther-

mal”, as chaotic light can be produced by many independent nonthermal sources.) 

There is a high probability that the photon which triggers the counter occurs dur-

ing a high intensity fluctuation and hence a high probability that a second photon 

will be detected arbitrarily soon thereafter. This effect known as photon bunching 

was first detected by Hanbury-Brown and Twiss [ 2]. Later experiments [ 15] showed 

excellent agreement with the theoretical predictions for chaotic and coherent light. 

The preceding anlaysis does not rely on quantisation of the electromagnetic field but 

may be deduced from a purely classical analysis of the electromagnetic field with 

fluctuating amplitudes for the modes. 

2.8 Quantum Mechanical Fields 

The second-order correlation function can be used to characterise quantum mechani-

cal fields. We shall restrict our attention to a single-mode and two-mode fields. There 

is a simple relation between .g(2) (0) and the variance on the photon number for a 



2.8 Quantum Mechanical Fields 37 

single mode field described in terms of the annihilation and creation operators,.a, a†. 

It is 

.g(2) (0) = 〈a† 2a2〉
〈a†a〉2 = 1 + 

V (n) − n̄ 

n̄2
(2.59) 

where .n̄ = 〈a†a〉 is the mean photon number and .V (n) = 〈(a†a)2〉 − 〈a†a〉2 is the 
variance n the photon number. In the case of a coherent state we find . g(2) (0) = 1 

while for a number state, .|n〉, we find .g(2) (0) = 1 − 1/n. 

If.g(2) (τ ) < g(2) (0) there is a tendency for photons to arrive in pairs. This situation 

is referred to as photon bunching. The converse situation, .g(2) (τ ) > g(2) (0) is called 

anti-bunching. Equations (2.57, 2.58) indicate that.g(2) (τ ) → 1 on a sufficiently long 

time scale. Thus a field for which .g(2) (0) <  1 will always exhibit anti-bunching on 

some time scale. A value of .g(2) (0) less than unity could not have been predicted 

by a classical analysis. Equation (2.53) always predicts .g(2) (0) ≥ 1. To obtain a 

.g(2) (0) ≤ 1 would require the field to have elements of negative probability, which 

is forbidden for a true probability distribution. Photon anti-bunching is a feature 

peculiar to the quantum mechanical nature of the electromagnetic field. 

A distinction should be maintained between photon anti-bunching and sub- Pois-

sonian statistics, although the two phenomena are closely related. For Poisson statis-

tics the variance of the photon number is equal to the mean. Thus a measure of 

sub-Poissonian statistics is provided by the quantity .V (n) <  n. Certainly a field for 

which .g(2) (τ ) < 1 for all . τ will exhibit sub-Poissonian statistics. However, it is pos-

sible to create fields for which .g(2) (τ ) > g(2) (0) but which exhibit super-Poissonian 

statistics over some time interval. 

In the case of quantum fields the second oder correlation function is 

.G(2) (t : τ)  = 〈a†(t)a†(t + τ)a(t + τ)a(t)〉 . (2.60) 

In the case of a stationary source, that is to say one in which all transients due to 

switch-on have died out, we can define the stationary second order correlation as 

.G(2) (τ ) = lim 
t→∞ 

G(2) (t : τ)  . (2.61) 

In the case of a stationary thermal source, if we detect a photon at time . t it is very 

likely that we will detect another photon a short time later. Thus .G(2) (τ ) has a peak 

at .τ = 0 and decays for increasing . τ . This is known as photon bunching. In the case 

of a photon counting in the output of a laser, .G(2) (τ ) is constant. 

For photon number states discussed in Chap. 1, the photon counting statistics 

is certainly not stationary. However most single photon sources deliver periodic 

sequences of pulses for which each pulse is a single photon state. In that case we 

expect suppression of .G(2) (0) and a peak at every period of the pulse sequence. The 

suppression is not surprising: if one conditions off a single count at .t = 0 there are 

no more photons left to detect from that pulse and one must wait at least until the 

next single photon pulse comes along. Thus there are peaks at .τ = T , the period of 

the source. 
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Fig. 2.2 The second order correlation function measured by Kuhn et al. using single photon source 

showing the suppression at zero delay expected for a single photon source. The hatched area 

represents correlations between photons and detector-noise counts. Reproduced, with permission, 

as Fig. 4 of [ 4] 

An experiment to demonstrate this suppression using a single photon source was 

undertaken by Kuhn et al. [ 4]. In the experiment a sequence of single photon pulses is 

emitted on demand from a single three-level atom strongly coupled to a high-finesse 

optical cavity. The experimental results for .g(2) (τ ) are shown in Fig. 2.2. 

In the case of the two photon multi-mode state, 

.|2ξ 〉 =  
1√
2

[∫ ∞ 

−∞ 

dω ξ̃ (ω)ã
† 
in(ω)

]2 

|0〉 . (2.62) 

the second order correlation function is given by 

.G(2) (t; τ)  = 2|ξ(t)|2|ξ(t + τ)|2 (2.63) 

This is the product for the rate of a detection of a single photon at time. t and a second 

photon at time .t + τ . The pre factor of . 2 is an indication of bosonic statistics, and is 

called bunching in quantum optics. 

This effect may be observed in a two-photon version of the HBT experiment, 

Fig. 2.3. A two-photon state is directed towards a .50 : 50 beam splitter and a single 

photon detector is placed in each output mode. Let .b1(t), b2(t) represent the positive 

frequency components of the field in each output. The second order correlation 

function for the output fields is 

. 〈b† 1(t)b
† 
2(t + τ)b2(t + τ)b1(t)〉 =  

1 

4
〈a† 1 (t)a

† 
1 (t + τ)a1(t + τ)a1(t)〉 =  

1 

2 
|ξ(t)|2|ξ(t + τ)|2 

(2.64) 

while 

.〈b† i (t)bi (t)〉 =  
1 

2
〈a† i (t)ai (t)〉 (2.65) 
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Fig. 2.3 A quantum Hanbury Brown Twiss (HBT) experiment with a two photon pulse. The input 

mode .a1 is prepared in the two photon state in (2.62). The input mode .a2 is in the vacuum state 

The normalised second order correlation function is 

.g(2) (t, τ  )  = 〈b† 1(t)b
† 
2(t + τ)b2(t + τ)b2(t)〉

〈b† 1(t)b1(t)〉〈b
† 
2(t)b2(t)〉

= 2
|ξ(t + τ)|2 

|ξ(t)|2 (2.66) 

Note that this is always equal to. 2 at zero delay. This is similar to thermal light. In the 

case of thermal light however the functions.ξ(t) are complex amplitudes of a classical 

Gaussian process and an additional average must be made of these amplitudes as in 

(2.52). If .ξ(t) is given by (1.129) we find that this is independent of . t , 

.g(2) (τ ) = 2e−2γ τ (2.67) 

The peak of . 2 at zero delay is the signature of photon bunching. An experimental 

demonstration was presented by Wolf et al. [ 5] using a two-photon source based on 

two trapped ions. 

The original HBT experiment did not use two-photon states of this kind as the 

stellar sources are chaotic (Gaussian). In the case of Gaussian light we note that 

there is a simple relation between first order and second order correlation functions 

given by (2.55). The second order correlation function for thermal light is given by 

(2.58) and thus there is a connection between the first and second order correlation 

functions. 

If the stellar sources are not thermal we need a more complicated intensity inter-

ferometer. A novel type of two-photon interferometer for astrometry, which uses 

photons from two separate sky sources was proposed by Gottesman, Jennewein and 

Croke [ 12] that goes beyond the HBT interferometer. 
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2.8.1 Squeezed State Photon Number Fluctuations 

The variance of photon number for the squeezed state .|α, r〉, with .r ∈ R and . α = 

|α|eiθ is 

.V (n) = 2 cosh2 r sinh2 r + |α|2(cosh 2r − cos 2θ.  sinh 2r ) (2.68) 

In the case that the .θ = 0, 

.V (n) = 2 cosh2 r sinh2 r + |α|2e−2r θ = 0. (2.69) 

while for 

.V (n) = 2 cosh2 r sinh2 r + |α|2e2r θ = π/2. (2.70) 

The first case corresponds to the squeezed quadrature in the same quadrature as the 

coherent amplitude and the second case the squeezed quadrature is orthogonal to the 

phase of the coherent amplitude. We call the first case amplitude squeezed and the 

second case phase squeezed. These two situations are depicted in Fig. 2.4. It is clear 

that amplitude squeezed states can have reduced photon number fluctuations while 

phase squeezed states have enhanced photon number fluctuations. 

2.8.2 Cat State Photon Number Fluctuations 

Cat states, introduced in Chap. 1, are an interesting example of anti-bunched light. 

Consider the orthogonal states, 

.|α±〉 =  N±(α)[|α〉 ± | −  α〉] (2.71) 

with 

.N±(α) = 1
√

2
(

1 ± e−2|α|2)
(2.72) 

Fig. 2.4 In a we show an amplitude squeezed state. In b we show a phase squeezed state 
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Fig. 2.5 Two fields are 

combined on a beam splitter 

with transmitivity as a first 

step to realise homodyne or 

heterodyne detection 

The mean photon number is given by .〈a†a〉± = |α|2(tanh(|α|2)±1. It is easily 

verified that .〈a† 2a2〉± = |α|4. Thus 

.g(2) (0) =
{

[

tanh |α|2
]2 

for |α+〉
[

tanh |α|2
]−2 

for |α−〉
(2.73) 

These approach the same limit as .|α|2 → ∞  but have very different behaviour for 

small .|α|. This is because .|α+〉 have only even photon numbers and thus the photon 

statistics are highly bunched, while the odd cat is anti-bunched as it contains mostly 

a one photon component. The second order correlation function for cat states were 

measured by Besse et al. [ 6] at microwave frequencies. 

2.9 Phase-Dependent Correlation Functions 

The even-ordered correlation functions such as the second-order correlation func-

tion .G(n,n) (x) contain no phase information and are a measure of the fluctua-

tions in the photon number. The odd-ordered correlation functions . G(n,m) (x1 . . .  

xn, xn+1 . . .  xn+m ) with .n 
= m will contain information about the phase fluctuations 

of the electromagnetic field. The variances in the quadrature phases .�X2 
1 and . �X2 

2 

are measurements of this type. These correspond to homodyne and heterodyne mea-

surements (see Chap. 7). These schemes require a reference signal known as the 

local oscillator before photodetection. Homodyning with a reference signal of fixed 

phase gives the phase sensitivity necessary to yield the quadrature variances. 

Consider two fields .E1(r, t) and .E2(r, t) of the same frequency, combined on a 

beam splitter with transmitivity . η, as shown in Fig. 2.5. This is a phase dependent 

measurement as the intensity falling on the photo-detector depends on the relative 

phase and frequency of the two input fields. 

We expand the two incident fields into the usual positive and negative frequency 

components 

.E j (r, t) = i

(

�ω 

2ǫ0V

)1/2 

(a j e
i(k j ·r−ωt) − a

† 
j e

−i(k j ·r−ωt) ) (2.74) 
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The total field falling on the photo detector is given by 

.ET (r, t) = i

(

�ω 

2ǫ0V

)1/2 

(cei(k1·r−ωt) − c†e−i (k1·r−ωt) ) , (2.75) 

where 

.c = 
√

ηa1 + i
√

1 − ηa2 . (2.76) 

We have included a .90◦ phase shift between the reflected and transmitted beams at 

the beam splitter required by time reversal invariance. 

The photo-detector responds with a detection rate proportional to .〈c†c〉. This is 
given by 

.〈c†c〉 =  η〈a†a〉 +  (1 − η)〈b†b〉 −  i
√

η(1 − η)(〈a†b〉 + 〈b†a〉) . (2.77) 

We will assume that the field .E2(r, t) is in a coherent state with a large and control-

lable amplitude,.β = |β|ei θ . We refer to this field as the local oscillator as it provides 

a phase and frequency reference, while we regard .E1(r, t) as the signal field. In this 

case we have taken the carrier frequency of the signal field which is the condition 

for homodyne detection. To linear order in the field amplitude we see that 

.〈c†c〉 ≈  (1 − η)〈|β|2 − i |β|
√

η(1 − η)〈Xθ +π/2〉 . (2.78) 

where .Xθ+π/2 ≡ aei θ + ae−iθ . If the reflected intensity of the local oscillator field 

is subtracted, this is proportional to the mean of the quadrature phase of the signal 

field. 

We now turn to a consideration of the fluctuations in the photo-current. The rms 

fluctuation current is determined by the variance of.c†c. For an intense local oscillator 

in a coherent state this variance is 

.〈�(c†c)2〉 ≈ |β|2(1 − η)2 + |β|2η(1 − η)〈�X2 
θ +π/2〉 (2.79) 

The first term here represents reflected local oscillator intensity fluctuations. If this 

term is subtracted, the photo-current fluctuations are determined by the variance in 

.Xθ+π/2, the measured quadrature phase operator. To subtract out the contribution of 

the reflected local oscillator field balanced homodyne detection may be used. In that 

scheme the output from both ports of the beam splitter is directed to a photodetector 

and the resulting currents subtracted before subsequent analysis. Balanced homodyne 

detection realises a direct measurement of the signal field quadrature phase operators 

[ 16]. 
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2.10 Photon Counting Measurements 

2.10.1 Semi-classical Theory 

The photo-electric effect was one of the key experiments that lead to the develop-

ment of quantum theory. Einstein’s explanation of the phenomenon introduced the 

idea of light quanta to explain photo-electron emission from a metal subjected to 

illumination. The energy of ejected electrons was determined by the frequency of 

the light falling on the metal while the number of electrons ejected per second was 

determined by the intensity of the light. 

In a typical photo-counting experiment, the absorption of light in a material results 

in a photo-current. If the intensity of the light is low enough, the current is seen to be 

composed of individual current pulses resulting from individual photon absorption 

events. A simple integrator can count these events. The theory must describe the 

statistics of this current/count in terms of the quantum state of the light impinging 

on the detector. We will begin with a simpler semi-classical treatment in which the 

average photo-current current is proportional to the classical fluctuating intensity of 

the field. 

As in all quantum measurement the actual observed phenomenon is a classical 

random variable. In the case of absorptive photo-detection measurements we pos-

tulate a classical random variable that corresponds to whether or not a photon is 

absorbed in a small time interval. dt . We thus define a random variable,.dN  (t) ∈ 0, 1, 

that takes binary values. It follows that .dN  (t)2 = dN  (t). The current resulting from 

this random variable is 

.J (t) = e

∫ t 

−∞ 

dN  (t ′)h(t − t ′) (2.80) 

where . e is the elementary charge and .h(t) is a causal response function for the entire 

measurement circuit, i.e .h(t) = 0 for .t < 0. Clearly the current is also a classical 

stochastic process. We can now say that the classical stochastic process .dN  (t) is a 

conditional Poisson process conditioned on the quantum nature of the light. 

The average current is determined by the average of .dN  (t). This is simply the 

probability, .p1(t), that a single photon is detected between . t and .t + dt . We expect 

that, for a classical field, the rate of detection is proportional to the field intensity, 

.I (t) = E
(−) (t)E(+) (t), and so we set 

.p1(t) = E[dN  (t)] =  ηE(−) (t)E(+) (t)dt  = ηI (t)dt  . (2.81) 

where . η is a device dependent constant. This defines an inhomogeneous Poisson 

process (a time dependent detection rate). Then 

.J (t) = eη

∫ t 

−∞ 

dt ′h(t − t ′)I (t ′) (2.82) 
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and . α has units of (Watts . Ohms).−1 and depends on the physical nature of the 

detector. We will assume for simplicity that the response function is a unit top-hat 

function a width of . T . Then define 

.J (t; T ) = eη 
1 

T

∫ t+T 

t 

dt  I  (t) = eη ̄I (t; T ) (2.83) 

and we have defined the time averaged intensity over a counting interval as 

. Ī (t; T ) = 
1 

T

∫ t+T 

t 

dt  I  (t) (2.84) 

In the case of a single plane wave field, the intensity is a constant, so . Ī (t; T ) = 

I , and .p1(t) = α I dt . The probability for no counts to occur in the time interval 

.[t, t + T ) may be found by dividing the time interval into .N bins of size . δt , or  

.δt = T /N . The probability for no counts to occur in the time interval is 

.P0(T + t, t) ≈ (1 − ηI T  /N )N , (2.85) 

In the limit of .N → ∞  with . T fixed we see that 

.P0(T + t, t) = e−ηI T  , (2.86) 

In the case of a non constant intensity, the probability for no counts to occur in 

the time interval is 

.P0(T + t, t) ≈ 

N
∏

k=1 

(1 − p1(tk )) , (2.87) 

where .tk = kδt . We can approximate .p1(tk ) = α I (tk )δt and thus 

.1 − p1(tk ) ≈ e−ηI (tk )δt (2.88) 

In the limit of.N → ∞with. T fixed, the probability for no counts in the time interval 

is 

.P0(t; T ) = exp

[

−η

∫ t+T 

t 

dt ′ I (t ′)

]

= exp
[

−ηT Ī (t : T )
]

. (2.89) 

where 

. Ī (t : T ) = 
1 

T

∫ t+T 

t 

dt ′ I (t ′) (2.90) 

In the case of . n counts in the interval . t to .t + T , we can specify a fine grained 

history of detection events . t1, t2, . . .  tn where .tn means one count was observed 

between .tk and .tk + dt . The fine grained probability is given as a function of the 

history .Pn(t : T |t1, t2, . . .  tn). 
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Suppose that .n = 1 and this occurred at the end of the time interval. The proba-

bility for this history is 

.P1(t; T |t1 = t) = ηI (T + t)dt  exp

[

−η

∫ t+T 

t 

dt ′ I (t ′)

]

. (2.91) 

If we know that only one cont has occurred, but do not know when during the counting 

interval it occurred, the probability for this even coarser-grained history is 

.P1(t; T ) = η

∫ t+T 

t 

dt1 I (t1) exp

[

−η

∫ t+T 

t 

dt ′ I (t ′)

]

(2.92) 

. = ηT Ī (t; T ) exp
[

−ηT Ī (t; T )
]

. (2.93) 

Continuing this line of reasoning we encounter time ordered integrals of the form 

.

∫ t+T 

t 

dtn

∫ tn 

t 

dtn−1 . . .

∫ t2 

t 

dt1 I (tn)I (tn−1) . . .  I (t1) (2.94) 

which is equal to 

. fn(t; T ) = 
1 

n!

(∫ t+T 

t 

dt ′ I (t ′)

)n 

(2.95) 

The probability to count . n photons is thus 

.Pn(t; T ) = 
1 

n!
(

ηT Ī (t; T )
)n 

exp
[

−ηT Ī (t; T )
]

. (2.96) 

This is a Poisson distribution with mean .E[n] ≡  ̄n = ηT Ī (t; T ). 
In the simplest case of a constant intensity .I (t, T ) is independent of . t and . T , 

hence 

. Ī (t; T ) = I (2.97) 

a constant. Thus 

.Pn(T ) = 
n̄n 

n! e
−n̄ (2.98) 

where the average count is .n̄ = ηI T  . 

In the case of a thermal source, .I = |α|2 where . α is a gaussian random variable 

with mean zero, .α = 0 and covariance .|α|2 = I0. The photon count distributions is 

then given by 

.Pn(T ) = 
(ηT )n 

I0n!

∫

d2α 

π 

(|α|2)n 
n! e−ηT |α|2 e−|α|2/I0 (2.99) 

= 1 

1 + n̄

(

n̄ 

1 + n̄

)n 

where .n̄ = ηT I0. 
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2.11 Quantum Mechanical Photon Count Distribution 

In the quantum case, the detection rate is proportional to the average intensity. I (t) =
〈E (−) (t)E (+) (t)〉. We now need to specify the quantum state of the field. Given that 

Galuber’s theory assumes that detection corresponds to an absorption of a photon, 

detecting . n photons should mean that, whatever state the field started in, it now has . n 

photons less than when it started. The classical theory does not take this measurement 

‘back-action’ into account. We will return to this question in Chap. 7 when we discuss 

measurement in more detail. Here we simply give the result first derived by Mandel 

[ 17] and usually referred to as the Mandel formula . 

.Pn(T ) =
〈

: [η ̂I (T )T ]n 
n! exp[−η ̂I (T )T ] :

〉

(2.100) 

where 

. Î (T ) = 
1 

T

∫ T 

0 

dt  a†(t)a(t) (2.101) 

where .a(t), a†(t) are given by (1.119) The notation .〈: ... :〉 denotes a normally 

ordered average over creation and annihilation operators. This means that between 

the colons we move all the creation operators to the left of the annihilation operators 

as if they commute. 

For a single mode field we get 

.Pn(T ) = 
(ηT )n 

n! 

∞
∑

m=0 

(−ηT )m 

m! tr[ρa† n+man+m] (2.102) 

If the field is diagonal in the number basis .ρ =
∑

k pk |k〉〈k|, we get  

.Pn(T ) = 

∞
∑

k,m=0 

pk 
(−1)m (ηT )(n+m) 

n!m! 〈k|a† n+man+m |k〉 (2.103) 

= 

∞
∑

k=n 

pk 
(ηT )n 

n! 

k−n
∑

m=0 

(−ηT )m 

m! 
k! 

(k − (n + m))! 

= 

∞
∑

k=n 

pk

(

k 

n

)

(ηT )n 
k−n
∑

m=0 

(−ηT )m
(

k − n 

m

)

= 

∞
∑

k=n 

pk

(

k 

n

)

(ηT )n(1 − ηT )k−n 

This is a Bernoulli deletion process where the probability of not counting a photon is 

.1 − ηT . We refer to .ηT as the quantum efficiency. The photon number distributions 
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generated by a thermal light source in a single mode with frequency . ω 

.pn = (1 − λβ ) 

∞
∑

n=0 

λn β (2.104) 

where .λβ = e−β�ω. The resulting counting distribution is 

.Pn(T ) =
(ηT n̄β )

n 

(1 + ηT n̄β )n+1
(2.105) 

with .n̄β = λβ /(1 − λβ ). This is in the same for as the classical Gaussian result in 

(2.99). 

If the field is in a coherent state .ρ = |α0〉〈α0|, the distribution is 

.Pn(T ) = 
(ηT n̄0)

n 

n! e−ηT n̄0 (2.106) 

where .n̄0 = |α0|2 is the mean photon number in the coherent state. This is a Poisson 

distribution with mean.E[n] =  ηT n̄0. This is the same as the classical result in (2.98) 

with .I = n̄0. 

The form of (2.100) is a special case of the general result 

. Î (t) =
∫ t 

−∞ 

dt ′ R(t, t ′)a† d (t
′)ad (t

′) (2.107) 

where .R(t, t ′) is a detector response function and .ad (t) is a filtered temporal mode 

that is part of the definition of the detector [ 18], 

.ad (t) =
∫ ∞ 

−∞ 

dτ G(t, τ  )a(τ ) (2.108) 

and .G is the response function of the filter. In Sect. 14.2.2 we will discuss a non 

linear filter where 

.G(t, τ  )  =
∫ ∞ 

−∞ 

dωe−iω(t−τ)  μ̃∗(ω) (2.109) 

that describes a Raman single photon detector (quantum memory). 
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2.11.1 Photo-Electron Current Fluctuations 

The photoelectron current is given by the stochastic process in (2.80). For simplicity 

we will take the response function to be .h(t) = e−γ t so that 

.J (t) = e

∫ t 

−∞ 

e−γ (t−t ′)dN  (t ′) (2.110) 

The mean current is 

.E[J (t)] =  eη

∫ t 

−∞ 

e−γ (t−t ′) I (t ′)dt ′ (2.111) 

assuming that the intensity is a deterministic process. If this is not the case, and the 

intensity itself is a stochastic process, then we need to write 

.E[J (t)] =  eη

∫ t 

−∞ 

e−γ (t−t ′) 
E[I (t ′)]dt ′ (2.112) 

The mean squared current is 

.E[J (t)J (t)] =  e2η2
∫ t 

−∞

∫ t 

−∞ 

e−γ (2t−t ′−t ′′) 
E[dN  (t ′)dN  (t ′′)] (2.113) 

This requires more care as .dN  (t)2 = dN  (t). Discretising the integral gives 

. E[J (t)J (t)] =  e2η2
∫ t 

−∞ 

dt ′e−2γ t ′ I (t ′) + 2

∫ t 

−∞ 

dt ′
∫ t ′

−∞ 

dt ′′eγ (t ′+t ′′−2t) 
E[I (t ′)I (t ′′)] 

(2.114) 
Thus the variance in the current is 

. E[J (t), J (t)] =  e2η2
∫ t 

−∞ 

dt ′e−2γ t ′ I (t ′) + 2

∫ t 

−∞ 

dt ′
∫ t ′

−∞ 

dt ′′eγ (t ′+t ′′−2t) 
E[I (t ′), I (t ′′)] 

(2.115) 

In the case of constant intensity this becomes 

.E[J (t), J (t)] =  
e2η2 

2γ 
I (2.116) 

This is called the shot-noise. We will discuss the quantum case in Chap. 7. 
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Problems 

2.1 A beam splitter transforms incoming mode operators.ai , bi to the outgoing oper-

ators .ao, bo where 

. ao = 
√

ηai − i
√

1 − ηbi , b0 = 
√

ηbi − i
√

1 − ηai 

(a) Show that such a transformation may be generated by the unitary operator 

. U = e−iθ(a†b+ab†) η = cos2 θ 

(b) Thus show that if the incoming state is a coherent state.|αi 〉 ⊗ |βi 〉 , the outgoing 
state is also a coherent state with 

. αo = 
√

ηαi − i
√

1 − ηβi , β0 = 
√

ηβi − i
√

1 − ηαi 

(c) Show that, if the incoming state is the product number state .|1〉 ⊗ |1〉, the out-
going state is 

. (2η − 1)|1〉 ⊗ |1〉 +  i
√

η(1 − η)(|2〉 ⊗ |0〉 + |0〉 ⊗ |2〉) 

Note that when.η = 1/2 the ‘coincidence’ term.|1〉 ⊗ |1〉 does not appear, a result 
known as Hong-Ou-Mandel interference [ 19] 

2.2 In the experimental scheme of Fig. 2.3, light enters both input ports .a1, a2. The 

incoming state is the two-mode mixed state 

.ρ = 
1 

2
|2μ, 0〉〈2μ, 0| +  

1 

2 
|0, 2μ〉〈0, 2μ| +  

1√
2
|1μ, 1μ〉〈1μ, 1μ| (2.117) 

where .|nμ〉 is an .n-photon state of a single mode with temporal mode function . μ(t) 

(see (1.122)). Calculate the second order correlation function for the output field, 

.〈b† 1(t)b
† 
2(t + τ)b2(t + τ)b1(t)〉. 

2.3 Show that, for sufficiently long . T 

.〈1μ| ̂I (T )|1μ〉 =  1 (2.118) 

for the single photon pulse .|1μ〉 given in (1.122). 
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3Representations of the 
Electromagnetic Field 

Abstract 

A full description of the electromagnetic field requires a quantum statistical treat-

ment. The electromagnetic field has an infinite number of modes and each mode 

requires a statistical description in terms of its allowed quantum states. Each mode 

is described by an independent Hilbert space. In this chapter we introduce a num-

ber of functional representations for the density operator of the electromagnetic 

field: the P-function, the Wigner function and the Q-function. 

3.1 Classical Phase-Space Distributions 

We saw in Chap. 1 that the classical electromagnetic field can be described in 

terms of a probability distribution .P(α, α∗), over the complex amplitudes . α ∈ C 

for each mode. A similar description can be given for a classical simple harmonic 

oscillator by writing .α = x + iy  and treating .x, y as the dimensionless canonical 

coordinates in the classical phase space. Classical states are specified by giving the 

distribution .P(α, α∗) and observables are real valued, infinitely differentiable, func-
tions . f (α, α∗) ∈ R on phase-space. The average of a classical observable for a state 

.P(α, α∗) is 

.E[ f (α, α∗)] =
∫

d2α 

π 
f (α, α∗)P(α, α∗) (3.1) 

States of maximal knowledge would correspond to .P(α, α∗) = δ2(α − α0), for 

which an observable takes the deterministic value . f (α0, α
∗
0 ). 

Quantum states are specified in terms of the density operator. ρ and have no natural 

phase space representation. However a number of phase-space representations have 

been invented as a means for computing operator averages. We might expect that 

deterministic distributions in terms of delta functions would be problematic due to 

the uncertainty principle and this is indeed the case. 
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3.2 The P-Representation 

The coherent states .|α〉 (see Sect. 1.3) form a complete set of states, in fact, an over-

complete set of states. They may therefore be used as a basis set despite the fact that 

they are non-orthogonal. The following diagonal representation in terms of coherent 

states was introduced independently by Glauber [ 1] and Sudarshan [ 2] 

.ρ =
∫

d2α Pρ (α, α∗)|α〉〈α| . (3.2) 

This is clearly a statistical mixture of coherent states provided .P(α, α∗) is a true 
probability density on phase space. However it is easy to see that there are many 

quantum states for which such a distribution does not exist. The simplest example is 

a number state, .ρ = |N 〉〈N |. Taking matrix elements with a coherent state .|β〉, this 
requires that there exists a distribution .PN (α, α∗) such that 

.e−|β|2 |β|2N 

N ! 
=

∫

d2α PN (α, α∗)e−|α−β|2 ∀N . (3.3) 

Evaluating the left hand side at .β = 0 implies that .PN (α, α∗) must be negative 

on some region in the complex plane. This is not possible for a true probability 

distribution. In the exercises we treat the case of a squeezed vacuum for which no 

Glauber-Sudarshan representation exists. 

Nonetheless there are many physical states that do have a valid P-representation. 

It is obvious that the P-representation of the coherent state .|α0〉 is 

.P(α|α0) = δ(2) (α − α0) . (3.4) 

where .δ(2) (x + iy) = δ(x)δ(y). A thermal state also has a P-representation. In that 

case 

.PT (α, α∗) = 
1 

π ̄n 
e−|α|2/ ̄n (3.5) 

where . n̄ is given by 

.n̄ =
1 

e�ω/kB T − 1 
. (3.6) 

Using this we can evaluate the photon number distribution for a thermal state (see 

exercises). 

The P-representation assumes a central role in quantum optics as it gives normally 

ordered moments of the field by treating . α as a random variable and integrating over 

the complex plane, 

.〈a† nam〉 =  tr[a†aρ] =
∫

d2α P(α, α∗)α∗ nαm . (3.7) 
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The P-representation does not give the marginal distributions for the quadrature 

phase operators directly. The probability distribution for .X1 = a + a† for a system 

prepared in the state . ρ is given by 

.P(x) = 〈x |ρ|x〉 (3.8) 

with .X1|x〉 =  x |x〉. If . ρ has a Glauber-Sudarshan P-representation, 

.P(x) =
∫

d2α P(α)|〈α|x〉|2 , (3.9) 

where .〈α|x〉 is given in (1.59). On the other hand the marginal distribution of . P(α) 

for the real part of . α is simply 

.p(x) =
∫ ∞ 

−∞ 

dy  P(x + iy) , (3.10) 

which is clearly not the same. This is reflected in the moments. While 

.〈X1〉 =
∫

d2α P(α)(α + α∗) (3.11) 

we find the second order moment is given by 

.〈X2 
1〉 =  1 +

∫

d2α P(α)(α + α∗)2 . (3.12) 

as the P-function only gives normally ordered moments by direct integration. This 

is another reason why we cannot regard the P function as a true probability density 

in a classical phase space. 

In classical stochastic processes an important role is played by the characteristic 

function as a moment generating function. Let .P(α, α∗) be such a classical distri-
bution function for a system with a single degree of freedom. The characteristic 

function is defined by the complex valued moment 

.χ(η,  η∗) =
∫

d2α P(α, α∗)eηα∗−η∗α = E[eηα∗−η∗α] . (3.13) 

It then follows that 

.E[αnα∗ m] =  
∂n 

∂η∗ n 

∂m 

∂ηm 
χ(η,  η∗)

∣

∣

∣

∣

η=0 

. (3.14) 

Analogously the characteristic function for a state with a Glauber-Sudarshan P func-

tion is defined by 

.χN (η, η∗) =
∫

d2α P(α, α∗)eηα∗−η∗α = 〈eηa† e−η∗a〉 (3.15) 
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This determines normally ordered moments using (3.14), thus the subscript. Inverting 

the Fourier transform we see that 

.P(α) = 
1 

π 2

∫

d2ηχN (η, η∗)eη∗α−ηα∗ 

(3.16) 

3.2.1 Wigner’s Phase-Space Density 

The first quasi-probability distribution was introduced into quantum mechanics by 

Wigner [ 4]. It differs from the P function in that the marginal distributions correspond 

to the correct quantum distributions as given by the Born rule. The Wigner function 

may be defined as the Fourier transform of the symmetrically ordered characteristic 

function 

.χS(η) = 〈eηa†−η∗a〉 =  tr[ρeηa†−η∗a] (3.17) 

Thus 

.W (α) = 
1 

π 2

∫

d2ηχS(η)eη∗α−ηα∗ 

(3.18) 

The Wigner function is a Gaussian convolution of the Glauber-Sudarshan P function, 

.W (α) = 
2 

π

∫

d2β P(β)e−2|α−β|2 (3.19) 

While the Wigner function does give the quantum marginal distributions, it is not 

necessarily positive and thus cannot be a true phase-space probability density. For 

example, the symmetrically ordered characteristic function for a number state .|n〉 is 
given by the average value of the displacement operator, 

.χS(η) = 〈n|D(η)|n〉 . (3.20) 

This may be calculated by first finding the matrix elements of the displacement 

operator in the number basis, 

.〈m|D(η)|n〉 =
√

n! 
m!

e−|η|2/2(η)m−n Lm−n 
n (|η|2) m ≥ n (3.21) 

where .L
q 
p(z) are associated Laguerre polynomials. Taking the Fourier transform we 

find that the Wigner function for a number state .|n〉 is 

.Wn(α) = 
(−1)n 

π 
e−2|α|2 Ln(4|α|2) (3.22) 

which is clearly negative for . n odd. 
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The Wigner function for coherent squeezed states, .|α, r〉, are Gaussian (and pos-
itive). Writing .x̄1 = α + α∗ and .x̄2 = −i (α − α∗) we find that 

.Wα,r (x1, x2) = 
1 

2π 
exp[− 

e2r 

2 
(x1 − x̄1)

2 − 
e−2r 

2 
(x2 − x̄2)

2] (3.23) 

The Wigner function can be experimentally determined using the equality [ 5] 

.W (α) = 
2 

π 
tr[D(α)�D†(α)ρ] (3.24) 

where .� = eiπ a†a is the parity operator. A simple procedure was implemented by 

Banaszek et al. [ 6] based on photon counting. A simple example is the Schrödinger 

cat state of the form 

.|χ〉 =  
1

√
2 
(ei π/4|α0〉 +  e−iπ/4| −  α0〉) (3.25) 

This is not a parity cat but can be generated by a Kerr non linearity (see Chap. 4). 

The Wigner function is given by 

.W (α, 1/2) = 
1 

π

[

W+(α) + W−(α) + 2
√

W+(α)W−(α) sin (2α0ℑ(α))

]

(3.26) 

where 

.W±(α) = e−2|α±α0|2 (3.27) 

A contour plot of the Wigner function is shown in Fig. 3.1. The Wigner function for 

parity optical cat states was reported by Ourjoumtsev et al. [ 7]. They were generated 

by subtracting a single photon from a squeezed vacuum state (See chapter). 

Hofheinz et al. [ 8] measured the Wigner functions for the Fock state superposi-

tions, .|0〉 + |N 〉, of a microwave field in a superconducting resonator (see Chap. 11). 

The results are shown in Fig. 3.2. 

3.2.2 Q Function 

The Q-function (or Husimi function) is defined as the diagonal matrix elements of 

the density operator in the coherent state basis, 

.Q(α) = 〈α|ρ|α〉 (3.28) 

Clearly the Q-function is positive and bounded by one. Using (1.48) we see that the 

normalisation integral is 

. 

1 

π

∫

d2α Q(α) = 1 (3.29) 
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Fig. 3.1 The Wigner function contours for the cat state .|χ〉 with .α0 = 2. Blue indicates regions of 

negativity 

Fig.3.2 A comparison of the predicted and measured Wigner representation of Fock state superpo-

sitions .|0〉 + |N 〉 in a superconducting microwave resonantor. [Reproduced with permission from 

[ 8])] 
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Fig. 3.3 A schematic representation of the Arthurs and Kelly scheme [ 9] for the simultaneous 

measurement of the two non commuting system operators .X1, X2 by coupling them, respectively, 

to the commuting quadrature phase operator .Y 
(1) 
2 and .Y 

(2) 
2 of two distinct bosonic modes. The 

coupling is taken as impulsive as is the simultaneous projective measurement of the two apparatus 

observables resulting in the real values . x1, x2 

The Q-function is a true probability density for a special class of measurements. 

Suppose we set out to simultaneously measure the quadrature phase operators. X1, X2 

as defined in (1.54). As these operators do not commute the allowed physical states 

are constrained by the Heisenberg uncertainty principle (HUP), (1.55). However 

this does not prevent us from making simultaneous measurements of the quadrature 

operators so long as sufficient noise in added by the measurement so as to ensure 

the resulting conditional state does not violate the HUP. In other words, they can 

be measured simultaneous, but not arbitrarily accurately. The construction of such 

a measurement scheme was first given by Arthurs and Kelly [ 9]. We follow the 

presentation of [ 10]. 

We couple each quadrature phase operator of a field mode to two distinct readout 

modes and simultaneously readout a quadrature phase operator on each those two 

field modes, see Fig. 3.3. The impulsive interaction between the system and two 

distinct apparatus operators .Y 
(1) 
2 and .Y 

(2) 
2 is described by the unitary ‘scattering’ 

operator 

.Uint  = exp[− 
i 

2 
(X1Y 

(1) 
2 + X2Y 

(2) 
2 )] (3.30) 

where the apparatus operators are part of a canonically conjugate pair . [Y ( j ) 1 , Y 
( j) 
2 ] =  

2i . The input state of the three systems before the interaction is .|ψ〉s |0〉1|0〉2 where 
.|ψ〉 is an arbitrary system state and .|0〉 j are oscillator ground states (vacuum states). 

After the interaction the output state is 

.|
〉out = Uint |ψ〉s |0〉1|0〉2 (3.31) 

In the Heisenberg picture this interaction displaces the conjugate apparatus operators 

by .X1, X2 respectively as 

.Y 
( j) 
1 → U

† 
int  Y 

( j ) 
1 U

† 
int  = Y 

( j ) 
1 + X j (3.32) 
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the first detector recording the system observable .X1 and the second detector record-

ing the system observable .X2. To read out the results, we projectively measure the 

apparatus observables .Y 
( j) 
1 immediately after the interaction with the result .x j for 

. j = 1, 2. The joint probability density operator for these two results is given by Q-

function of the arbitrary system state .|ψ〉 with .α = x1 + i x2. It follows from (3.32) 

that the uncertainty of the apparatus operators after the measurement is given by 

.〈(�Y 
( j ) 
1 )2〉out = 1 + 〈ψ |�X2 

j |ψ〉 (3.33) 

This shows that each measurement apparatus is adding a small amount of noise for 

each system quadrature operator. This is the price paid for a simultaneous measure-

ment of these two non commuting operators. The noise added by the measurement 

enforces the moments of the Q-function to correspond to anti-normally ordered 

moments of the system annihilation and creation operators 

. 

1 

π

∫

d2α α∗ nαm = 〈ψ |ama† n|ψ〉 (3.34) 

The preceding discussion might appear a little abstract. In Chap. 7 we will see that 

the Q-function describes heterodyne detection of a cavity field mode. 

The Q-functions for displaced squeezed states.|α, r〉 are easily seen to be Gaussian. 
See (1.77). The Q-function for a number state, .|n〉 is given by 

.Qn(α) = 
|α|2n 

n! 
e−|α|2 (3.35) 

While this is positive, it has zeros—a very unusual feature for a putative phase-space 

probability density. This is a general feature of the Q-function of highly non classical 

states and parallels the negativity of the Wigner functions of non classical states. The 

zeros of the Q-function can be considered a defining feature of non classical states. 

In fact, the Q-function is a holomorphic function and is determined by a Gaussian 

envelope and zeros in the complex plane. The number of zeros can characterise the 

non classicality of the state. This is known as the stellar rank [ 11]. 

3.2.3 Generalised P Representations 

An expansion in non diagonal coherent state projection operators was suggested by 

Drummond and Gardiner [ 12] and is called the generalised P-representation, 

.P(α, β) =
∫

dμ(α, β)P(α, β)�(α, β) (3.36) 

where .μ(α, β) is an integration measure chosen to ensure normalisability, 

.

∫

D 

dμ(α, β)P(α, β) = 1 (3.37) 
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and 

.�(α, β) = 
|α〉〈β∗|
〈β∗|α〉

(3.38) 

This representation is not necessarily positive, in fact it is complex in general. 

Nonetheless it can used as an effective way to compute normally ordered moments 

for any state. In Chap. 8 we will see it can be used to give a powerful stochastic 

description of quantum dynamics in the doubled complex plane. 

The definition given by (3.36) leads to different representations depending on the 

integration measure. The Glauber-Sudarshan representation corresponds to 

.dμ(α, β) = δ(2) (α∗ − β)d2αd2β (3.39) 

3.2.4 The Complex P Representation 

The complex P Representation is defined by .dμ(α, β) = dαdβ, where .(α, β) are 

treated as complex variables which are to be integrated on individual contours . C 

and . C′. The conditions for the existence of this representation are discussed in [ 12]. 
This representation may take on complex values so in no sense can it have any 

physical interpretation as a probability distribution. However, as we shall see it is an 

extremely useful representation giving exact results for certain problems and physical 

observables such as all the single time correlation functions. 

Consider a density operator, expanded as 

.ρ = 
1 

π 2

∫

D

∫

D′
〈α|ρ|β∗〉|α〉〈β∗|d2αd2β (3.40) 

Using the residue theorem we write this as 

. ρ = 
1 

π 2

∫

D

∫

D′
〈α|ρ|β∗〉〈β∗|α〉

[∮

C

∮

C ′

�(α′, β ′) 

(α − α′)(β − β ′)

]

|α〉〈β∗|d2αd2β 

(3.41) 

Exchanging the order of integration we see the complex P function is 

.P(α, β) = −  
1 

4π 2

∫

D

∫

D′
〈α′|ρ|β

′ ∗〉〈β
′ ∗|α′〉

d2α′d2β ′

(α − α′)(β − β ′) 
(3.42) 

The complex P representation of a coherent state .|z〉 is 

.Pz(α, β) = −  
1 

4π 2 
(α − z)−1(β − z∗)−1 (3.43) 

In the case of the number state .|n〉 we find 

.Pn(α, β) = −  
1 

4π 2 
eαβ n! 

(αβ)n+1
(3.44) 
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To see this, use (1.41, 1.46) and write 

.ρ =
∮

dαdβ P(α, β) 

∞
∑

n,m=0 

|n′〉〈m′|
√
n′!m′!

e−αβ αn′
βm′

(3.45) 

Substituting (3.44), 

.ρ = −  
1 

4π 2 

∞
∑

n,m=0 

(n!)2 
√
n′!m′!

∮

dαdβ α−(n+1−n′) β−(n+1−m′)|n′〉〈m′| (3.46) 

Choosing any contour of integration encircling the origin and using Cauchy’s theo-

rem, 

. 

1 

2π i

∮

dz  zn = 0 if  n ≥ 0, (3.47) 

. = 1 if  n ≥ −1, (3.48) 

. = 0 if  n < −1 (3.49) 

we find .ρ = |n〉〈n| as required. 
In the case of the squeezed state .|z, r〉 the complex P representation is 

.Pz,r (α, β) = Ne(α−z)(β−z∗)+coth r [(α−z)2+(β−z∗)2] (3.50) 

The normalisation constant .N is found by integrating along the imaginary axis for . r 

real. The resulting normalisation for this choice of contour is 

.N = −
1 

2π sinh r 
(3.51) 

As an example of the use of the complex P representation we shall consider 

the photon counting formula given by (2.100). Using the diagonal coherent-state 

representation for . ρ we may write the photon counting probability .Pm (T ) as 

.Pm (T ) =
∫

d2zP(z) 
(|z|2μ(T ))m 

m!
exp[−|z|2μ(T )] (3.52) 

An appealing feature of this equation is that .Pm (T ) is given by an averaged Poisson 

distribution with .P(z) in the role of a probability distribution over the complex field 

amplitude. It is a close analogue of the classical expression (2.99). We know however 

that .P(z) is not a true probability distribution and may take on negative values. In 

such cases we may consider a generalisation by way of the complex P representation 

for . ρ. The photocount probability is then given by 

.Pm (T ) =
∮

CC ′
dzdz′P(z, z′) 

(zz′μ(T ))m 

m!
exp[−zz′μ(T )] . (3.53) 
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We shall demonstrate the use of this formula to calculate .Pm (T ) for states for which 

no well behaved diagonal P distribution exists. 

For a number state with density operator .ρ = |n〉〈n| we have 

.P(z, z′) = −  
1 

4π 2 
ezz

′
n!(zz′)−(n+1) (3.54) 

and the contours .C and .C ′ enclose the origin. Substituting into (3.53) for . m > n 

the integrand contains no poles and .Pm (T ) = 0 while for .m < n poles of order 

.n − m + 1 contribute in each integration and we obtain 

.Pm (T ) = 

∞
∑

n=m

(

n 

m

)

μ(T )m (1 − μ(T ))n−m (3.55) 

as obtained previously. 

For a squeezed state with density operator .ρ = |α, r〉〈α, r |, where . α and . r are 

assumed real, we have 

. P(z, z′) = −  
1 

2π 
(sinh r)−1 exp[(z − α)(z′ − α) + coth r [(z − α)2 + (z′ − α)2]] 

(3.56) 

and the contours are chosen along the imaginary axis in .z, z′. The integral then gives 

.Pm (T ) = 

∞
∑

n=m

(

n 

m

)

μ(T )m (1 − μ(T ))n−m Pn (3.57) 

with the photon number distribution given by (1.82). 

3.2.5 Positive P Representation 

The integration measure is chosen as.dμ(α, β) = d2αd2β corresponds to the positive 

P representation .P(α, β). In this case the phase space has doubled. It can be proved 

that .P(α, β) always exists and is positive for any density operator. 

For this reason we call it the positive P representation and it has all the mathemat-

ical properties of a genuine probability. It also has an interpretation as a probability 

distribution [ 13]. By using four apparatus instead of the two used in the Q function 

model, we can get a positive distribution that nonetheless gives normally ordered 

moments by direct integration. The positive P representation is useful in represent-

ing quantum irreversible dynamics as a stochastic process in the doubled phase space 

variables. 
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Problems 

3.1 The Glauber-Sudarshan representation for a thermal state is given in (3.5) as  

.PT (α, α∗) = 
1 

π ̄n 
e−|α|2/ ̄n (3.58) 

Show that the photon number distribution is given by 

.pn = 〈n|ρT |n〉 =
n̄n 

(1 + n̄)n+1
(3.59) 

3.2 Prove that the Wigner function is a Gaussian convolution of the Glauber-

Sudarshan P function, (3.19). 

3.3 Find the Q function and the Wigner function for the cat states in (1.107). 
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4Quantum Dynamics in Simple 
Nonlinear Optical Systems 

Abstract 

In this chapter we will analyse some simple processes in nonlinear optics where 

analytic solutions are possible. This will serve to illustrate how the formalism 

developed in the preceding chapters may be applied. In addition, the simple exam-

ples chosen illustrate many of the quantum phenomena studied in more complex 

systems in later chapters. This chapter will serve as an introduction to how quan-

tum phenomena such as photon antibunching, squeezing and violation of certain 

classical inequalities may occur in nonlinear optical systems. In addition, we 

include an introduction to quantum limits to amplification. 

4.1 Single-Mode Quantum Dynamics 

A single-mode field is the simplest example of a quantum field and suffices to illus-

trate a number of quantum features such as photon antibunching and squeezing. To 

illustrate these phenomena we consider the degenerate parametric amplifier. 

4.1.1 Degenerate Parametric Amplifier 

One of the simplest interactions in nonlinear optics is where a photon of frequency 

.2ω is absorbed and converted into two photons each with frequency . ω. This process 

known as parametric down conversion may occur in a medium with a second-order 

nonlinear susceptibility .χ 
(2) [ 1]. A more detailed discussion on nonlinear optical 

interactions is given in Chap. 8. 

We begin with the simplified interaction Hamiltonian for a single cavity mode in 

degenerate parametric interaction 

.H = �ωa†a − i
�χ 

2

(

E∗a2e2iωt − Ea† 2e−2i ωt
)

(4.1) 
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where . χ is the second order nonlinear susceptibility and . E is the complex amplitude 

of the pump field treated as a classical undepleted coherent state at a carrier frequency 

twice that of the quantum mode. If we work in the interaction picture we have the 

time independent Hamiltonian 

.HI = −i
�g 

2 
(a2 − a† 2) , (4.2) 

where we have chosen the phase of the pump such that .g = χ E is real. The Heisen-

berg equations of motion are 

. 

da 

dt  
= ga†, 

da† 

dt  
= ga . (4.3) 

The solution is 

.a(t) = a(0) cosh gt + a†(0) sinh gt (4.4) 

which has the form of the squeezing transformation, see (1.63). As such, we expect 

the light produced by parametric amplification to be squeezed. This can immediately 

be seen by introducing the two quadrature phase amplitudes 

.X1 = a + a†, X2 = −i(a − a†) (4.5) 

which satisfy the Heisenberg equations of motion 

. 

dX1 

dt  
= gX2, 

dX2 

dt  
= −gX1 . (4.6) 

The solution is 

.X1(t) = X1(0)e
gt , X2(t) = X2(0)e

−gt (4.7) 

These equations demonstrate that the parametric amplifier is a phase-sensitive ampli-

fier which amplifies one quadrature and attenuates the other. The variances are given 

by 

.V[X1(t)] =  V[X1(0)]e2gt , V[X2(t)] =  V[X2(0)]e−2gt (4.8) 

In the case of a coherent state or vacuum state, .V[X1(0)] =  V[X2(0)] =  1, the prod-

uct of the variances satisfies the minimum uncertainty relation. Thus the de-amplified 

quadrature has less quantum noise than the vacuum level. The amount of squeezing 

or noise reduction is proportional to the strength of the nonlinearity, the amplitude 

of the pump and the interaction time. 

We shall next consider the photon statistics of the light produced by the parametric 

amplifier. First we analyse the light produced from an initial vacuum state. The 

intensity correlation function .g(2) (0) in this case is 

.g(2) (0) = 1 + 
cosh 2gt 

sinh2 gt 
(4.9) 
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This indicates that the squeezed light generated from an initial vacuum exhibits 

photon bunching .g(2) (0) >  1. This is expected for a squeezed vacuum for which 

photon pairs are generated simultaneously. 

4.1.2 Wigner and Q Function 

The full photon statistics of the light generated in parametric amplification may 

be calculated via a quasi-probability distribution. The P function becomes singular 

due to the quantum correlations which build up during the amplification process. 

However the Wigner distribution and the Q-function remain positive and Gaussian. 

The Wigner function describing the state of the parametric oscillator at any time, 

. t , may now be calculated via the symmetrically ordered characteristic function, 

.χ(η,  t) = tr[ρ(0)eηa†(t)−η∗a(t)] (4.10) 

Using (4.4) we find that for an initial coherent state, .|α〉, 

.χ(η,  t) = exp[ηα∗(t) − η∗α(t) − 
|η|2 

2 
cosh 2χ t + 

1 

4 
(η2 + η∗ 2) sinh 2χ t] (4.11) 

where .α(t) = α cosh χ t + α∗ sinh χ t . This may be written as 

.χ(η,  t) = eη
T ·α(t)+ 1 

2 η
T �η (4.12) 

where .η
T = (η, −η∗) and .α(t) = (α(t), α∗(t)) with 

.� = 
1 

2

(

sinh 2χ t cosh 2χ t 

cosh 2χ t sinh 2χ t

)

(4.13) 

The Wigner function is then given by the Fourier transform of .χ(η,  t) we find 

that 

.W (α, t) = 
2 

π 
exp

[

−
1 

2 
(α − α(t))T C−1(α − α(t))

]

(4.14) 

where .αT = (α, α∗). This is a bivariate Gaussian distribution with mean .α(t) and 

covariance matrix .C = �. In terms of the real variables .x1 = α + α∗ and . x2 = 

−i (α − α∗), the Wigner function takes the form 

.W (α, t) = 
1 

2π 
exp

[

− 
1 

2 
(x − x(t))T R−1(x − x(t))

]

(4.15) 

where 

.R = 
1 

2

(

e2χ t 0 

0 e−2χ t

)

(4.16) 
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As the Q function is a Gaussian convolution of the Wigner function, the Q function 

itself must be Gaussian. In this case it is given by 

.Q(α, t) =
1 

π cosh gt 
exp

[

−
1 

2 
(α − α(t))T A−1(α − α(t))

]

(4.17) 

where 

.A = � + 
1 

2

(

0 1  

1 0

)

. (4.18) 

4.2 Two-Mode Quantum Dynamics 

4.2.1 Non-degenerate Parametric Amplifier 

The non-degenerate parametric amplifier is a generalization of the degenerate para-

metric amplifier considered in the previous section. In this case the classical pump 

mode at frequency .ωp interacts in a nonlinear optical medium with two modes at 

frequency.ω1 and.ω2 . These frequencies sum to the pump frequency,.ωp = ω1 + ω2. 

It is conventional to designate one mode as the signal and the other as the idler. 

The Hamiltonian describing this system is 

.H = �ω1a
† 
1a1 + �ω2a

† 
2a2 + i�g

(

a
† 
1a

† 
2e

−iωp t − a1a2e
−i ωp t

)

, (4.19) 

where . a1(. a2) is the annihilation operator for the signal (idler) mode. The coupling 

constant . g is proportional to the second-order susceptibility of the medium and to 

the amplitude of the pump field. 

The Heisenberg equations of motion in the interaction picture are 

. 

da1 

dt  
= ga

† 
2 (4.20) 

. 

da
† 
2 

dt  
= ga1 (4.21) 

The solutions to these equations are 

.a1(t) = a1(0) cosh gt + a
† 
2 (0) sinh gt , (4.22) 

.a2(t) = a2(0) cosh gt + a
† 
1 (0) sinh gt . (4.23) 

If the system starts in an initial coherent state .|α1〉 ⊗ |α2〉, the mean photon number 

in mode one at time . t is 

.n̄1(t) = 〈a† 1 (t)a1(t)〉 = |α1 cosh gt + α∗
2 sinh gt |

2 + sinh2 gt (4.24) 



4.2 Two-Mode Quantum Dynamics 67 

The last term in this equation represents the amplification of vacuum fluctuations 

since if the system initially starts in the vacuum (.α1 = α2 = 0) the mean number of 

photons is given by .sinh2 gt . 

The intensity correlation functions of this system exhibit interesting quantum 

features. With a two-mode system we may consider cross correlations between the 

two modes. We shall show that quantum correlations may exist which violate classical 

inequalities. 

Consider the moment .〈a† 1a1a
† 
2a2〉. We may express this moment in terms of the 

Glauber–Sudarshan P function as follows: 

.〈a† 1a1a
† 
2a2〉 =

∫

d2α1

∫

d2α2|α1|2|α2|2 P(α1, α2) . (4.25) 

If a positive P function exists the right-hand side of this equation is the classical 

intensity correlation function for two fields with the fluctuating complex amplitudes 

.α1, α2. It follows from the Hölder inequality that 

.

∫

d2α1d
2α2|α1|2|α2|2 P(α1, α2) (4.26) 

≤
[∫

d2α1d
2α2|α1|4 P(α1, α2)

]1/2 

×
[∫

d2α1d
2α2|α2|4 P(α1, α2)

]1/2 

. 

This may be written in terms of an inequality for the operator moments 

.〈a† 1a1a
† 
2a2〉 ≤

[

〈a† 2  
1 a2 1〉〈a

† 2  
2 a2 2〉

]1/2 
, (4.27) 

a result known as the Cauchy-Schwarz inequality. If the two modes are symmetric, 

as for the non-degenerate parametric amplifier, this inequality implies 

.〈a† 1a1a
† 
2a2〉 ≤ 〈a† 2  

1 a2 1〉 . (4.28) 

Because we have assumed a positive Glauber-Sudarshan P function, this is a 

weak inequality and there exists certain quantum fields which will violate it. It is 

more usual to express the Cauchy–Schwarz inequality in terms of the second-order 

intensity correlation functions defined for a single-mode field, 

.

[

g
(0) 
12

]2 
≤ g

(2) 
1 (0)g

(2) 
2 (0) (4.29) 

where 

.g
(2) 
k (0) =

〈a† k a
† 
k akak〉

〈a† k ak〉2 
(4.30) 
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and 

.g
(2) 
12 (0) =

〈a† 1a
† 
2a1a2〉

〈a† 1a1〉〈a
† 
2a2〉

(4.31) 

A stronger inequality may be derived for quantum fields when a Glauber– 

Sudarshan P representation does not exist. Using (4.27), 

.〈a† 1a1a
† 
2a2〉

2 ≤ 〈(a† 1a1)
2〉〈(a† 2a2)

2〉 . (4.32) 

and symmetry, this implies 

.〈a† 1a1a
† 
2a2〉 ≤ 〈(a† 2  

1 a2 1 )〉 + 〈a† 1a1〉 . (4.33) 

or 

.g
(2) 
12 (0) ≤ g

(2) 
1 (0) + 

1

〈a† 1a1〉
. (4.34) 

We now show that the non-degenerate parametric amplifier if initially in the 

ground state leads to a maximum violation of the Cauchy–Schwarz inequality (4.29), 

as is consistent with the inequality (4.34). That is, the correlations built up in the 

parametric amplifier are the maximum allowed by quantum mechanics. 

In the degenerate parametric amplifier model In this system the following con-

servation law is easily seen to hold, 

.n1(t) − n2(t) = n1(0) − n2(0) , (4.35) 

where .nk (t) = a
† 
k (t)a(t). Using this relation the intensity correlation function may 

be written 

.〈n1(t)n2(t)〉 = 〈n1(t)2〉 + 〈n1(t)(n2(0) − n1(0))〉 . (4.36) 

If the system is initially in the vacuum state the last term is zero, thus 

.〈n1(t)n2(t)〉 = 〈a† 1 (t)a
† 
1 (t)a1(t)a1(t)〉 + 〈a† 1 (t)a1(t)〉 , (4.37) 

which corresponds to the maximum violation of the Cauchy–Schwarz inequal-

ity allowed by quantum mechanics. Thus the non-degenerate parametric amplifier 

exhibits quantum mechanical correlations which violate certain classical inequal-

ities. These quantum correlations may be further exploited to give squeezing and 

states similar to those discussed in the EPR paradox (see Chap. 13). 

In the interaction picture, the unitary operator for time evolution of the non degen-

erate parametric amplifier is 

.U (t) = egt(a
† 
1a

† 
2−a1a2) (4.38) 

Comparison with (1.84) shows that .U (t) is the unitary two-mode squeezing operator 

with.r = −gt . It is thus clear that the individual signal and idler modes are correlated 
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but not squeezed. In fact they have a reduced state that is equivalent to a thermal 

state with mean photon number .sinh2 gt . 

In order to see squeezing in a multi-mode system like this we need to be more 

careful in how we define the quadrature phase amplitudes that can be measured. This 

is done using homodyne detection as we describe in Chap. 7, and explicitly requires 

a frequency and phase coherent reference field that we call the local oscillator. We  

will define the squeezing with respect to the quadrature phase amplitudes of the field 

at the local oscillator frequency .ωLO  = ωp/2 and phase reference . θ [ 2]. 

The total field, given by the sum of the signal and idler modes, has positive 

frequency components in the laboratory frame given by 

.E (−) (t) = a1(t)e
−iω1t + a2(t)e

−iω2t (4.39) 

where .ak (t) are given in (4.20) and .ω1 + ω2 = ωp/2. Now define . ω1 = ωp/2 −
ǫ, ω2 = ωp/2 + ǫ. These are sidebands at half the pump frequency. The total field 

may now be written as 

.E(t) = (a1(t)e
iǫt + a2(t)e

−iǫt )e−iωp t/2 + (a
† 
1 (t)e

−iǫt + a
† 
2 (t)e

iǫt )eiωp t/2 (4.40) 

We are thus led to write this in terms of the quadrature phase amplitude operators 

defined by the carrier frequency .ωp/2 and phase reference . θ , (see Chap. 7 for a 

discussion of homodyne detection). 

.E(t) = Xθ (t, ǫ)  cos(ωpt/2 + θ)  − Xθ +π/2(t, ǫ)  sin(ωpt/2 + θ) (4.41) 

where 

.Xθ (t, ǫ)  = 
1

√
2

[(

(a1(t)e
iθ + a

† 
2 (t)e

−i θ
)

eiǫt + h.c.
]

, (4.42) 

.Xθ +π/2(t, ǫ)  = 
i

√
2

[(

a1(t)e
i θ − a

† 
2 (t)e

−i θ
)

eiǫt + h.c.
]

. (4.43) 

If the system starts in the vacuum state, the homodyne detection signal at frequency 

.ǫ = 0 will have a variance given by 

.Xθ (t, ǫ = 0) = cosh 2gt + cos 2θ sinh 2gt . (4.44) 

Thus for .θ = 0 we find 

.V[X0(t, ǫ = 0)] =  e2gt , (4.45) 

.V[Xπ/2(t, ǫ = 0)] =  e−2gt . (4.46) 

Changing the phase of the local oscillator by.π/2 enables one to move from enhanced 

to diminished noise in the homodyne signal. 

The full quantum correlations present in the parametric amplifier may be rep-

resented using a quasi-probability distribution. If both modes of the amplifier are 
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initially in the vacuum state, no Glauber P function for the total system exists at any 

time. However, a positive Gaussian Wigner function may be obtained. 

We may define a two mode characteristic function by a simple generalization of 

the single-mode definition. For both modes initially in the vacuum state this may be 

expressed as 

.χ(η1, η2, t) = 〈0|eη1a
† 
1 (t)−η∗

1a1(t)eη2a
† 
2 (t)−η∗

2a2(t)|0〉 (4.47) 

= e− 1 
2 (|η1(t)|

2+|η2(t)|2) 

where 

.η1(t) = η1 cosh gt − η∗
2 sinh gt (4.48) 

.η2(t) = η2 cosh gt − η∗
2 sinh gt . (4.49) 

Performing the Fourier transform, the Wigner function is then given by, 

. W (α1, α2, t) = 
4 

π 2 
exp

[

−2|α1 cosh gt − α∗
2 sinh gt |

2 − 2|α2 cosh gt − α1 sinh gt |2
]

(4.50) 

Making the change of variable .β1 = α1 + α∗
2 and .β2 = α2 + α∗

1 we see that 

.W (α1, α2, t) = 
4 

π 2 
exp

[

−
1 

2

(

|β1|2 

e2gt 
+ 

|β2|2 

e−2gt

)]

(4.51) 

in which form it is particularly easy to see that squeezing occurs in a linear combi-

nation of the two modes. 

The photon number representation of the signal and idler modes, starting in a 

vacuum state, follows from the two-mode squeezing operator (see (1.99)). It is 

.|ψ(t)〉 =  
1 

cosh gt 

∞
∑

n=0 

(tanh gt)n|n〉1 ⊗ |n〉2 (4.52) 

In this form it is easy to see how the non-degenerate parametric amplifier is a zero 

energy eigenstate of the photon number difference between the two modes. 

The non-degenerate parametric amplifier exemplifies many features of general 

linear amplification. One such feature is the limit placed on the amplifier gain if the 

output is to be squeezed. To see how this limit arises, and to see how it might be 

overcome, we write the solutions (4.22) in the form 

.aout 1 = G1/2ain  1 + (G − 1)1/2ain  2 (4.53) 

where .G = cosh2 gt is the gain and we now regard the initial operator as the input 

operators and the final operators as the output operators. It is clear that if the input 

state to mode-1 is an arbitrary state and the input to mode-2 is the vacuum that, 

.〈nout 1 〉 =  G〈nin  1 〉 +  (G − 1) (4.54) 
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where .n1 = a
† 
1a1. The first term shows that the output photon number is .G times the 

input photon number in mode-1. This suggests we regard .G as the energy gain of the 

system. The second term arises from the vacuum in mode-2. This is the necessary 

noise that must accompany amplification in the quantum domain [ 3]. The noise of 

amplification means that we cannot amplify a squeezed state in mode-1 without 

decreasing the squeezing. 

4.2.2 Cubic Quantum Dynamics 

In cavity opto mechanics the radiation pressure force couples mechanical motion to 

optical field modes. The force on a mirror is proportional to photon number inside 

the cavity. Consider an optical cavity with one mirror harmonically confined by an 

elastic spring. The centre of mass motion of the mirror is described by a simple 

Harmonic oscillator. The Hamiltonian is 

.Hm = 
p2 

2m 
+ mω2 

mq
2 (4.55) 

where .m is the effective mass of the bound mirror and .ωm is the resonant frequency. 

We introduce ladder operators, .b, b† as 

.q =

√

�

2mωm 

(b + b†) (4.56) 

.p = −i

√

m�ωm 

2 
(b − b†) (4.57) 

As.[q, p] =  i�we see that.[b, b†] =  1. The Hamiltonian for the cavity mode is given 

as usual by .Hc = �ωca
†a, where .a, a† are the annihilation and creation operators 

for the cavity field mode. 

The interaction energy between the mechanical and optical degree of freedom is 

.Hi = f qa†a (4.58) 

where . f is the force per photon. we write this in terms of the ladder operators as 

.HI = �g0(b + b†)a†a (4.59) 

where 

.g0 =
f

√
2�mωm 

(4.60) 

is the opto-mechanical coupling constant in units of frequency. The interaction 

Hamiltonian is of cubic order in the raising and lowering operators. 
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The full Hamiltonian is 

.H = �ωmb
†b + �ωca

†a + �g0(b + b†)a†a . (4.61) 

If we move to an interaction picture, we get the transformed hamiltonian 

.HI = �g0(be
−iωm t + b†ei ωm t )a†a (4.62) 

The Heisenberg equations of motion are 

. 

db 

dt  
= −ig0e

i ωm ta†a (4.63) 

. 

da 

dt  
= −ig0(b + b†)a (4.64) 

As .a†a is a constant of motion we can solve for . b(t) 

.b(t) = b(0) − 
g0a

†a 

ωm 

(eiωm t − 1) (4.65) 

Substituting this into the equation of motion for . a we see that 

. 

da 

dt  
= −ig0(b(0) + b†(0))a − i 

g2 0 

ωm 

a†a a (4.66) 

The second term here appears like a photon number dependent phase shift of the field. 

This is called a Kerr non linearity, and is discussed in the next section. It is expected 

here for the following reason. The radiation pressure force changes the momentum 

of the mechanical system. This causes the position of the mirror to change due to the 

harmonic motion of the mirror. However a changing position causes a detuning of 

the cavity. We thus see that the radiation pressure force will couple back to produce 

an intensity dependent detuning of the cavity. 

There is another way to see this induced Kerr effect. Clearly .a†a is a constant of 

motion. Using the canonical transformation 

.b → b + 
g0 

ωm 

a†a (4.67) 

the full Hamiltonian can be written 

.H = �ωm

(

b† + 
g0 

ωm 

a†a

)(

b + 
g0 

ωm 

a†a

)

− �χ(a†a)2 (4.68) 

where .χ = g2 0/ωm . The term proportional to . χ is called a self-Kerr interaction and 

is quartic in the annihilation and creation opertators for the field. 
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4.2.3 Kerr Quantum Dynamics 

We will consider the self-Kerr interaction in more detail and generalise it to a cross 

Kerr interaction between two field modes. Consider the Hamiltoninan for a single 

mode field 

.H = �ωa†a + �χ(a†a)2 (4.69) 

In the interaction picture, the Hamiltonian is 

.HI = �χ(a†a)2 (4.70) 

The Heisenberg equations of motion are 

. 

da 

dt  
= −iχ a − 2iχ a†a (4.71) 

As .a†a is a constant of motion the solution is 

.a(t) = a(0)e−2iχ t(a†a+1/2) (4.72) 

If the system starts in a coherent state .|α〉, the mean value of the amplitude at time 

.t > 0 is given by 

.〈a(t)〉 =  αe−i χ t 〈α|e−2iχ ta†a |α〉 (4.73) 

Using .e−iθ a†a |α〉 = |αe−iθ 〉 we see that 

.〈a(t)〉 =  αe−i χ t 〈α|αe−2iχ t 〉 =  αe−i χ t−|α|2(1−e−2i χ t ) (4.74) 

where we used (1.46). This function is clearly periodic with a period given by . T = 

χ/2π . However at times such that .χ t = π , the mean value is . π out of phase with 

the initial amplitude. 

We can get a better idea of what is happening by looking at the dynamics in the 

Schrödinger picture. Define the nonlinear transformation of a single mode coherent 

state, .|α〉, as  

.|α, θ〉 =  e−iθ(a†a)2 |α〉 (4.75) 

Using the number state expansion of coherent sates we see that 

.|α, θ〉 =  e−|α|2/2 
∞
∑

n=0 

αn 

√
n! 
e−i θ n2 |n〉 (4.76) 

If we set .θ = χ t we get the Schrödinger picture dynamics due to the Kerr self-

interaction. Setting .θ = 2π we see that the state is simply the initial state, .|α〉. 
Setting .θ = π we get .| −  α〉, the same as the initial state with a . π phase shift. 
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Fig. 4.1 The Wigner function (multiplied by .π/2) for a Kerr cat-state with .α = 2, .θ = π/2 versus 

hte real and imaginary parts of . α. Note the negative values between the two peaks 

Something more interesting happens at rational fractions of . π . Setting . θ = π/2 

we see that 

.e−in2π/2 =
{

1 n even 

−i n  odd 
(4.77) 

so 

.|α, π/2〉 =  Nα(e−iπ/4|α〉 +  eiπ/4| −  α〉) (4.78) 

where .Nα is a normalisation constant. These superposition of coherent staters have 

come to be called cat states as they are superpositions of distinguishable semi-

classical states reminiscent of Schrödinger’s famous gendanken experiment on the 

quantum control of feline metabolism. Note that these states are not parity eigen-

states. This is a direct result of the Kerr nonlinearity commuting with the photon 

number operator. The Wigner function for this state is shown in Fig. 4.1. Cat states 

were first investigated in [ 4, 5]. In fact we can get more general single mode cat states 

using .θ = 2π/K . Then .n2/K = n(n/K ) so we only need to find .n mod K to get the 

periodicity of the cat state. This is an effective measurement of photon number mod 

. K . We plot the Q-functions for some examples in Fig. 4.2. Such states are known as 

fractional revivals and are common in integrable non linear quantum dynamics. We 

use the Q-function for this purpose as the fractional revivals are easy to see. 

4.3 Universal Bosonic Dynamics 

We saw above that a cubic non linearity can be transformed to a quartic self interac-

tion. Kerr interactions generate states with negative Wigner functions. It is easy to 

see that Hamiltonians that are linear and quadratic in the annihilation and creation 

operators cannot generate states with a negative Wigner function (see Sect. 3.2.1). 

The Wigner function is given in terms of the displacement operator and the parity 

operator .
 = e−iπ a†a as 

.W (α) = 
2 

π 
tr(D(α)
D†(α)ρ) (4.79) 
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Fig. 4.2 The Q-function contours in the complex plane for a Kerr cat states with.α = 4,. θ = 2π/K 

As .
 has eigenvalues .±1, it is clear that 

.|tr(D(α)
D†(α)ρ)| ≤  1 (4.80) 

What is the class of states that explore significant regions of negativity? 

The answer is provided by a result of Lloyd and Braunstein [ 7]. They proved 

that universal simulation of a single bosonic mode is possible if the Hamiltonian 

includes operators that are at least cubic in the creation and annihilation operators, 

for example 

.{a, a†, a2, a† 2, (a†a)2} , (4.81) 

is universal. The first two operators generate displacements (Heisenberg-Weyl group) 

the next two quadratic operators generate the squeezing transformations (SU(1,1)). 

The quartic operator is the Kerr nonlinearity. Starting from the vacuum state, all 

states in the Hilbert space can be reached by time dependent Hamiltonians involving 

the four operators. The first four generate only positive Wigner functions. Adding 

the Kerr non linearity gives us the entire state space including access to states with 

negative Wigner functions. 



76 4 Quantum Dynamics in Simple Nonlinear Optical Systems 

Problems 

4.1 Verify (4.17). 

4.2 Frequency conversion is another process that can occur in a material with a 

second order non linear susceptibility. When pumped by a coherent classical field 

with frequency .ωp it converts a photon at frequency .ω1 to a frequency .ω2 (and 

conversely) with .ωp = ω2 − ω1 > 0. The Hamiltonian for frequency conversion is 

.H = �ω1a
† 
1a1 + �ω2a

† 
2a2 + �g(a

† 
1a2e

i ωp t + a1a
† 
2e

−iωp t ) (4.82) 

Show that the photon number sum of the signal and idler modes is a constant of 

motion. 

4.3 Show that a non degenerate parametric amplifier with a squeezed state at the 

input to the signal mode (labelled 1) and a vacuum state in the input to the idler 

mode (labelled 2) will decrease the squeezing at the output. Show that the maximum 

gain before squeezing is lost is 

.Gmax =
2 

V[X in  
1 ] +  V[X in  

2 ]
(4.83) 

4.4 Let the initial state of the mechanical system be a coherent state .|β0〉m so that 
.b|β0〉m = β0|β0〉m and the cavity field state be arbitrary with number state expansion 

.|ψ〉 =
∑

n zn|n〉. Show that the the state at time .t > 0 is 

.|�(t)〉cm = 

∞
∑

n=0 

zne
−inωct |n〉c ⊗ eiℑ(β∗

0 β(t))|βn(t)〉m (4.84) 

with the displacement 

.βn(t) = β0e
−i ωm t − 

g0n 

ωm 

(1 − e−iωm t ) (4.85) 

If the cavity is prepared in a coherent state .|α0〉 and the mechanical system is 

prepared in a thermal state 

.ρm = 
1 

π ̄n

∫

d2βe−|β|2/n̄|β〉〈β| (4.86) 

where . n̄ is the average number of phonons in the mechanical oscillator 

.n̄ = (eβ�ωm − 1)−1 (4.87) 
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where .β = (kB T )
−1 is the usual Boltzmann inverse temperature, show that the state 

of the total system at time .t > 0 is then given by 

. ρ(t) = e−|α|2 1 

π ̄n

∫

d2βe−|β|2/ ̄n 
∞
∑

n,m=0 

αnα
∗
me

−iχ t(n2−m2) 

√
n!m!

|βn〉〈βn| ⊗ |n〉〈m| 

(4.88) 
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5Open Quantum Systems 

Abstract 

No quantum system is ever completely isolated. At the very least, it must be 

coupled to the outside world when we make measurements. In this chapter we 

discuss techniques to treat open quantum systems. We consider the system of 

interest as weakly coupled to an environment which remains close to a steady state. 

We first derive a master equation for the density operator of the open system in the 

Schrödinger or interaction picture. Using the quasi-probability representations for 

the density operator, the master equation may be converted to a c-number Fokker– 

Planck equation. We describe an alternative formulation in terms of quantum 

stochastic differential equations, replacing the Heisenberg equations of motion 

for closed quantum systems. 

5.1 Master Equation 

An optical cavity, say a Fabry-Perot cavity, is open to the external world through 

photon loss out of the end mirrors. The cavity mode is the system of interest and 

evanescent coupling of the cavity field to the many mode field outside the cavity is 

responsible for this loss. Moreover, we can drive the cavity using external sources 

through the same coupling mechanism. We will refer to the external field as the 

environment and the cavity field as the system. We make measurements of the external 

field in order to infer the state of the cavity field. 

We consider a system described by the Hamiltonian .Hs coupled to an environ-

ment described by the Hamiltonian .He, modelled as a large number of harmonic 

oscillators, for example, the modes of the external electromagnetic field. There is 

a weak interaction between the system and its environment given by an interaction 

Hamiltonian . V . The total total Hamiltonian can be written .H = Hs + He + V . The 

dynamics of the total system plus environment, .ρT , is given in the interaction picture 
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by 

. 

dρT 

dt  
= −  

i

�
[V (t), ρT ] . (5.1) 

The reduced density operator for the system is defined by the partial trace . ρ(t) = 

tre[ρT ]. We let the state of the environment be a time-independent steady state . ρe 
typically a thermal equilibrium state. If we assume that, by some intervention, we 

can initialise the system state as .ρ(0), the total initial state is then 

.ρT (0) = ρ(0)ρe (5.2) 

This is a considerable idealisation as an open quantum system is usually always 

coupled to its environment but we will assume that this can be changed by a suitable 

preparation procedure acting at time .t = 0. As we will see in the next chapter, this 

is typically a measurement. 

The solution to (5.1) can be written in terms of the time ordered integral 

.ρT (t) = ρT (0) + 

∞
∑

n=0

(−i

�

)n ∫ t 

0 

dt1

∫ t1 

0 

dt2 . . . (5.3) 

×
∫ tn−1 

0 

dtn[V (t1), [V (t2), . . .  [V (tn), ρT (tn)]]] 

Taking the partial trace over the environment we see that 

.ρ(t) = ρ(0) + 

∞
∑

n=0

(−i

�

)n ∫ t 

0 

dt1

∫ t1 

0 

dt2 . . . (5.4) 

×
∫ tn−1 

0 

dtn tre[V (t1), [V (t2), . . . [V (tn), ρT (tn)]]] 

The ability to make sense of the partition into system plus environment implicitly 

assumes that the interaction between them is weak. If this is not the case, we need 

to find a new partition so that all components of the system are much more strongly 

interacting with each other than each component is interacting with the environment. 

If we can find such a partition then we can use second order perturbation theory to 

write 

.ρ(t) ≈ ρ(0) − 
i

�

∫ t 

0 

dt1tre[V (t1), ρeρ(t1)] (5.5) 

− 
1 

2�2

∫ t 

0 

dt1

∫ t1 

0 

dt2tre[V (t1), [V (t2), ρeρ(t2)]] 

Note that we have also taken .ρT (t) ≈ ρeρ(t). This is consistent with a second order 

perturbation approximation. It implicitly assumes that the environment relaxes back 

to its steady state much faster than the system state is changing. We will need to 
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check the consistency of this assumption with second order perturbation theory. We 

now see that 

. 

dρ(t) 

dt  
≈ −  

i

�
tre[V (t), ρeρ(t)] −  

1 

2�2

∫ t 

0 

dt1tre[V (t), [V (t1), ρeρ(t1)]] (5.6) 

We will assume that the interaction, .V (t), is not diagonal in the basis that diago-

nalises . ρe. In that case the first term is zero. For example, in the case of a damped 

bosonic mode we take 

.V (t) = �(a†Ŵ(t)eiω0t + aŴ†(t)e−iω0t ) (5.7) 

where 

.Ŵ(t) =
∑

k 

gkbke
−i ωk t (5.8) 

where .bk , b
† 
k are annihilation and creation operators for bosonic modes in the envi-

ronment. They could represent the many-mode field external to a cavity field or 

quantised elastic waves (phonons) coupled to an isolated nano-mechanical oscilla-

tor. The physical difference between these two cases appears in the choice of . gk 
as a function of . k. Substituting into (5.6), we find that the following integrals are 

required, 

.I1(t) =
∫ t 

0 

dt1〈Ŵ(t)Ŵ(t1)〉ei ω0(t+t1) (5.9) 

.I2(t) =
∫ t 

0 

dt1〈Ŵ†(t)Ŵ†(t1)〉e−iω0(t+t1) (5.10) 

.I3(t) =
∫ t 

0 

dt1〈Ŵ(t)Ŵ†(t1)〉eiω0(t−t1) (5.11) 

.I4(t) =
∫ t 

0 

dt1〈Ŵ†(t)Ŵ(t1)〉e−iω0(t−t1) (5.12) 

The integrals can be evaluated once we have calculated the four two-time correlation 

functions 

.c1(t, t1) = 〈Ŵ(t)Ŵ(t1)〉 =
∑

k,k′
gk gk′〈bkbk′〉e−i (ωt+ω′t1) (5.13) 

.c2(t, t1) = 〈Ŵ†(t)Ŵ†(t1)〉 =  c∗
2(t1, t) (5.14) 

.c3(t, t1) = 〈Ŵ(t)Ŵ†(t1)〉 =
∑

k,k′
gk g

∗ 

k′〈bkb† k′〉e−i(ωt−ω′t1) (5.15) 

.c4(t, t1) = 〈Ŵ†(t)Ŵ(t1)〉 =
∑

k,k′
g∗
k gk′〈b† kbk′〉ei (ωt−ω′t1) (5.16) 
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where .ω, ω′ are the frequencies associated to the modes labelled with wave numbers 

.k, k′. In the case of electromagnetism the dispersion relation is.ω = ck. In the physical 

cases of interest in quantum optics, these will turn out to be functions of the time 

difference .t − t1 a situation we refer to as stationary correlations. 

5.1.1 Thermal Environment 

We need to specify the moments .〈bkbk′〉, 〈bkb† k′〉, 〈b† kbk′〉 which depend on the state 
of the environment. For an environment in thermal equilibrium at temperature . T we 

set .〈bkbk′〉 = 〈b† kb
† 
k′〉 =  0 and 

.〈bkb† k′〉 =  (n̄(ω) + 1)δk,k′ (5.17) 

.〈b† kbk′〉 =  ̄n(ω)δk,k′ (5.18) 

where the mean thermal excitation of mode . k is 

.n̄(ω) = 1 

eβ�ω − 1 
(5.19) 

and .β = (kB T )
−1 where .kB is Boltzmann’s constant. We then find that the only non 

zero correlation functions are 

.c3(t, t1) =
∑

k 

|gk |2(n̄(ω) + 1)e−iω(t−t1) (5.20) 

.c4(t, t1) =
∑

k 

|gk |2 n̄(ω)e−iω(t−t1) (5.21) 

which are functions only of the time difference reflecting the stationary statistics of 

a thermal field. We convert the sums to integrals using a density of states function 

.ρ(ω), 

.c3(t, t1) =
∫ ∞ 

0 

dωρ(ω)|g(ω)|2(n̄(ω) + 1)e−i ω(t−t1) (5.22) 

.c4(t, t1) =
∫ ∞ 

0 

dωρ(ω)|g(ω)|2 n̄(ω)e−i ω(t−t1) (5.23) 

In quantum optics, at optical frequencies, the functions .ρ(ω), |g(ω)|2, n̄(ω) are 

slowly varying over a bandwidth .B around .ω = ω0 with .ω0 ≫ B. We then make a 

change of variable .ǫ = ω − ω0, t
′ = t − t1 and write 
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.I4(t) =
∫ t 

0 

dt ′
∫ ∞ 

−ω0 

dωρ(ǫ + ω0)|g(ǫ + ω0)|2 n̄(ǫ + ω0)e
−iǫt ′ (5.24) 

. ≈
∫ ∞ 

−∞ 

dω ρ(ǫ + ω0)|g(ǫ + ω0)|2 n̄(ǫ + ω0)

∫ t 

0 

dt ′e−iǫt ′ (5.25) 

. ≈
∫ ∞ 

−∞ 

dω ρ(ǫ + ω0)|g(ǫ + ω0)|2 n̄(ǫ + ω0)

∫ ∞ 

0 

dt ′e−iǫt ′ (5.26) 

where we have anticipated that the integral over . ǫ is expected to lead to a rapidly 

decaying function of time and extended the upper limit of the time integral to infinity. 

Using 

.

∫ ∞ 

0 

dt  e−iǫt = πδ(ǫ)  ± PV  [ 1
ǫ
] (5.27) 

where .PV  denotes the Cauchy principal value part. If we now define the damping 

rate as 

.γ = ρ2(ω0)g
2(ω0) (5.28) 

and 

.
 = PV

[∫ ∞ 

−∞ 

dǫ

2π 

1

ǫ
ρ(ǫ + ω0)|g(ǫ + ω0)|2 n̄(ǫ + ω0)

]

(5.29) 

then 

.I4 = γ n̄(ω0) − i
 (5.30) 

In a similar way we can find 

.I3 = γ (  ̄n(ω0) + 1) − i
′ (5.31) 

The imaginary parts constitute small frequency shifts and we will ignore them. The 

resulting equation of motion for the system is the master equation 

. 

dρ 

dt  
= γ (n̄ + 1)D[a]ρ + γ n̄D[a†]ρ (5.32) 

where we have set .n̄ = n̄(ω0) and defined the super-operator 

.D[A]ρ = Aρ A† − 
1 

2 
A† Aρ − 

1 

2 
ρ A† A (5.33) 

Equations of motion for the expectation values of system operators may be directly 

derived from the master equation, (5.32). For example, the mean amplitude of the 

simple harmonic oscillator is given by 

. 

d〈a〉
dt  

= tr

[

a 
dρ 

dt

]

= −  
γ 

2
〈a〉 . (5.34) 
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with the solution 

.〈a(t)〉 = 〈a(0)〉e−γ t/2 . (5.35) 

This is in the interaction picture. In the Schrödinger picture it is 

.〈a(t)〉 = 〈a(0)〉e−i ω0t−γ t/2 . (5.36) 

The mean amplitude decays towards zero. On the other hand the equation of motion 

for the mean photon number is 

. 

d〈a†a〉
dt

= −γ 〈a†a〉 +  γ n̄ , (5.37) 

with the solution 

.〈a†(t)a(t)〉 = 〈a†(0)a(0)〉e−γ t + n̄(1 − e−γ t ) . (5.38) 

In the steady state this approaches . n̄ and indicates thermal equilibrium with the 

environment. 

The photon number distribution defined by .pn(t) = tr[ρ(t)|n〉〈n|] obeys the 
Markov master equation 

. 

dpn(t) 

dt
= t+(n − 1) pn−1 + t−(n + 1) pn+1 − (t+(n) + t−(n)) pn (5.39) 

where the transition rates are given by 

.t+(n) = γ n̄(n + 1) (5.40) 

.t−(n) = γ (  ̄n + 1)n (5.41) 

In the steady state the detailed balance condition holds, 

.t−(n) pss,n = t+(n − 1) pss,n−1 (5.42) 

and the steady state solution is found by iteration 

.pss,n = pss,0 

n
∏

k=1 

t+(k − 1) 

t−(k) 
(5.43) 

After normalisation we get 

.pss,n = 
1 

n̄ + 1

(

n̄ 

n̄ + 1

)n 

= 1 

n̄ + 1 
e−nβ�ω0 (5.44) 



5.1 Master Equation 85 

At optical frequencies there are very few thermally excited photons at laboratory 

temperature .n̄(ω0) ≪ 1. It is for this reason that most tests of quantum founda-

tions have been done at optical frequencies (see Chap. 13). In this regime we can 

approximate the irreversible dynamics by the zero temperature master equation in 

the Schrödinger picture, 

. 

dρ 

dt  
= −iω0[a†a, ρ] +  γ D[a]ρ (5.45) 

The solution to this equation can be written in terms of time ordered integrals [ 2] 

.ρ(t) = 

∞
∑

n=0 

Nn(t)ρ(0) (5.46) 

where the super-operators .Nn(t) are given by 

. Nn(t) =
∫ t 

0 

dtm

∫ tm 

0 

dtm−1 . . .

∫ t2 

0 

dt1S(t − tm )JS(tm − tm−1) . . .  JS(t1) 

(5.47) 

with 

.Jρ = γ aρa† (5.48) 

.S(t)ρ = e−i (ω0−iγ /2)ta†aρei (ω0+i γ /2)ta†a (5.49) 

.N0(t)ρ = S(t)ρ (5.50) 

We will refer to the super-operators .J as the jump operations. Their action on a 

photon number eigenstate is 

.J |n〉〈n| =  γ n|n − 1〉〈n − 1| (5.51) 

The operations .S(t) are called the no-jump operations as 

.S(t)|n〉〈n| =  e−γ nt |n〉〈n| . (5.52) 

5.1.2 Squeezed Environment 

As we have seen an environment in thermal equilibrium leads to stationary two-time 

correlation functions. There is another important situation in which this is true. It is 

the case of a pure squeezed environment in which modes at different frequencies are 

entangled. 

In this case the phase dependent moments are non zero [ 1] 

.〈bkbk′〉 =  M(ω)δ(2ω0 − ω − ω′) (5.53) 
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where .〈b† kb
† 
k′〉 = 〈bkbk′〉∗. If we make the change of variables . ω = ω0 − ǫ, ω′ = 

ω0 + ǫ′ we see that this can be written as 

.〈bkbk′〉 =  M(ω0 − ǫ)δ(ǫ + ǫ′) (5.54) 

This indicates that modes symmetrically displaced around .ω0 by . ǫ are correlated. 

In the interaction picture we only need the function .M(ǫ) and we assume this is 

symmetric and slowly varying around zero. The moments for the phase independent 

terms are 

.〈bkb† k′〉 =  (N (ω) + 1)δ(ω − ω′) (5.55) 

.〈bkb† k′〉 =  N (ω)δ(ω − ω′) (5.56) 

where .|M(ω)|2 = N (ω)(N (ω) + 1). 

Following the derivation of the thermal master equation using similar approxima-

tions we find that the master equation for a squeezed environment takes the form 

. 

dρ 

dt  
= γ (N + 1)D[a]ρ + γ ND[a†]ρ (5.57) 

+γ 

2 
M(2a†ρa† − a† 2ρ − ρa† 2) + 

γ 

2 
M∗(2aρa − a2ρ − ρa2) 

where .M = M(ω0) and .N = N (ω0) with .|M |2 = N (N + 1). 

5.2 The Fock State Master Equation 

The previous examples have assumed that the external cavity fields are gaussian; 

vacuum, coherent or squeezed. A rather more interesting case is to consider the 

response of a cavity to a single photon input. In these cases an elegant master equation 

method has been developed by Combes and coworkers [ 5]. 

Let . X̂ be a system operator. First define the Heisenberg operator 

. jt ( X̂ ) = U †(t)
(

X̂ ⊗ I f

)

U (t) (5.58) 

where.I f is the identity operator acting on the field. Note that because.U (t) describes 

an interaction between the system and the field, . jt ( X̂ ) is, generally, a joint system-

field operator. A typical example of relevance to us would be . X̂ = a†a. 

The objective is to find the moments of such time evolved operator. For example, 

if the initial state of the system is .|η〉 and the initial state of the field is the one photon 
state .|1ξ 〉. Then define the joint initial state as .|η 1ξ 〉 = |η〉 ⊗ |1ξ 〉 the moment of 

. jt ( X̂ ) is defined by 

.̟ 11 
t ( X̂ ) = 〈η, 1ξ | jt ( X̂)|η, 1ξ 〉 (5.59) 
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For example, if. X̂ = a†a then.̟ 11 
t (a†a) ≡ 〈n̂(t)〉 is simply the mean photon number 

inside the cavity at time . t . 

The next step is to write down an equation of motion for the arbitrary moment 

.̟ 11 
t ( X̂ ). We then discover that this couples to other diagonal and off diagonal 

moments. As an example, consider the equations for the case of the number operator, 

.n̂ = a†a. A word of caution, the operation .DL [A] is not the same as what appears 

in the master equation. It is defined as 

.DL [A] =  L† AL − 
1 

2 
(L†L A  + AL†L) (5.60) 

a form that is sometimes called the adjoint Linbladian. We want the case in which 

.L → 
√

κa, so the first term here is the opposite way around from what appears in the 

master equation. This results from using the cyclic property of trace in the moments. 

We then find that 

. 

d̟ 11 
t ( ̂n) 

dt
= −κ̟ 11 

t (n̂) − 
√

κ(̟ 01 
t (a)ξ ∗(t) + ̟ 10 

t (a†)ξ(t)) (5.61) 

We thus find that we need the equations for .̟ 01 
t (a) and .̟ 10 

t (a). These are easily 

found using (19) in Gough et al. [ 5]. 

. 

d̟ 01 
t (a) 

dt
= −  

κ 

2
̟ 01 

t (a) − 
√

κξ(t) (5.62) 

. 

d̟ 10 
t (a) 

dt
= −κ 

2
̟ 10 

t (a) − 
√

κξ 
∗(t) (5.63) 

The initial conditions are 

.̟ 11 
0 ( ̂n) = 〈η|a†a|η〉 (5.64) 

.̟ 00 
0 ( ̂n) = 〈η|a†a|η〉 (5.65) 

.̟ 10 
0 (a) = 0 (5.66) 

.̟ 01 
0 (a) = 0 (5.67) 

Solving the off-diagonal equations we find 

.̟ 01 
t (a) = −

√
κe−κt/2

∫ t 

0 

dt ′ξ(t ′)eκt ′/2 (5.68) 

.̟ 10 
t (a†) = −

√
κe−κt/2

∫ t 

0 

dt ′ξ ∗(t ′)eκt ′/2 (5.69) 

Thus 

. 

d̟ 11 
t ( ̂n) 

dt
= −κ̟ 11 

t ( ̂n) + κe−κt/2

∫ t 

0 

dt ′(ξ(t ′)ξ(t) + ξ ∗(t ′)ξ(t))eκt ′/2 (5.70) 
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Fig. 5.1 The mean photon number in a one sided cavity driven by a single photon input at . t = 0 

In this case .̟ 11 
t (n̂) is the unconditional intracavity photon number .〈a†(t)a(t)〉. 

With the choice 

.ξ(t) =
{√

γ e−γ t/2 t ≥ 0 

0 t < 0 
. (5.71) 

we find the solution 

.〈a†a〉 = 4γ κ  

(γ − κ)2 
e−κt

(

1 − e−(γ −κ)t/2
)2 

. (5.72) 

This is plotted in Fig. 5.1. 

5.3 P Representation 

An operator master equation may be transformed to a c-number equation using the 

Glauber–Sudarshan representation for . ρ. It is necessary to first establish the rules 

for converting operators to an equivalent c-number form. We know the relation 

.a|α〉 =  α|α〉. What is .a†|α〉? 
To answer this question it is convenient to use the Bargmann state .||α〉 defined by 

.||α〉 =  e|α|2/2|α〉 (5.73) 

Using (1.32) we see that 

.||α〉 =  eαa† |0〉 (5.74) 

It follows that 

.a†||α〉 =  
∂ 

∂α 
||α〉 (5.75) 
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If we write the Glauber-Sudarshan P-representation in terms of the Bargman states 

we get 

.ρ =
∫

d2α P(α)e−|α|2 ||α〉〈α|| (5.76) 

Then 

.a†ρ =
∫

d2α P(α)e−|α|2 ∂ 

∂α 
||α〉〈α|| (5.77) 

We integrate this by parts to get 

.a†ρ =
∫

d2α||α〉〈α||
(

− 
∂ 

∂α 
P(α)e−|α|2

)

(5.78) 

=
∫

d2α|α〉〈α|
(

α∗ − 
∂ 

∂α 
P(α)

)

We can use this relation to represent the term .a†ρ that appears in the master 

equation in terms of a differential operation on.P(α). We are thus led to the following 

replacement rules 

.aρ → α P(α) (5.79) 

.ρa† → α∗ P(α) (5.80) 

.a†ρ →
(

α∗ − 
∂ 

∂α

)

P(α) (5.81) 

.ρa →
(

α − 
∂ 

∂α∗

)

P(α) (5.82) 

Similarly we can see that 

.a†aρ →
(

α∗ − 
∂ 

∂α

)

α P(α) (5.83) 

.ρa†a →
(

α − 
∂ 

∂α∗

)

α∗ P(α) (5.84) 

Using these rules the equivalent P representation for the master equation (5.57) 
is 

. 
∂ P(α) 

∂t 
=

[

γ 

2

(

∂ 

∂α 
α + ∂ 

∂α∗ 
α∗

)

+ 
γ 

2

(

M∗ ∂2 

∂α∗ 2 
+ M 

∂2 

∂α2

)

+ γ N 
∂2 

∂α∂α∗

]

P(α) 

(5.85) 

When .|M | > N this equation has “non positive-definite” diffusion, hence the . P 

representation is unable to describe the system in terms of a classical stochastic 

process. Alternative representations will be discussed later in this chapter. When 

.M ≤ N the equation has the form of a Fokker–Planck equation. We shall discuss 

some useful properties of Fokker–Planck equations below. 
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A general Fokker-Planck equation in . n variables may be written in the form 

. 

∂ P(x) 

∂t
=

[

− 
∂ 

∂x j 
A j (x) + 

1 

2 

∂ 

∂ xi 

∂ 

∂x j 
Di j  (x)

]

P(x) (5.86) 

(There is an implicit sum over repeated indices). The first derivative term determines 

the mean, or deterministic, motion and is called the drift term, while the second 

derivative term, provided.Di j  is positive definite, will cause a broadening or diffusion 

of .P(x, t) and is called the diffusion term. The drift vector .A has components . A j 
and the diffusion matrix is.D has components.Di j  . The different role of each of these 

terms may be seen in the equations for the first and second oder moments, 

. 

d〈xk〉
dt  

= 〈Ak (x)〉 (5.87) 

. 

d〈xk xl〉
dt

= 〈xk Al (x)〉 + 〈xl Ak (x)〉 +  
1 

2
〈Dkl (x) + Dlk  (x)〉 (5.88) 

We see that .Ak determines the motion of the mean amplitude whereas .Dlk  enters 

into the equation for correlations. 

In the case of the damped harmonic oscillator interacting with a thermal bath, 

(5.85), with .M = 0, N = n̄, 

. 

d〈α〉
dt  

= −  
γ 

2
〈α〉 , (5.89) 

. 

d〈α∗α〉
dt  

= −γ 〈α∗α〉 +  γ n̄ . (5.90) 

where the average .〈...〉 refers to an integral over .P(α), 

.〈α∗ m αn〉 =
∫

d2 αα∗ m αn P(α) . (5.91) 

Noting that the P-representation gives normally ordered moments, these equations 

are equivalent to (5.34, 5.37). In the case of a squeezed bath, the role of the terms 

multiplied by .M can be seen in the phase-dependent second order moment, 

. 

d〈α2〉
dt  

= −γ 〈α2〉 +  γ M (5.92) 

For many problems in nonlinear optics it is sufficient to know the steady state 

solution. That is the solution after all transients have died out. We shall therefore 

seek a steady state solution to (5.86). The steady state is given by the solution to 

.

[

− 
∂ 

∂x j 
A j (x) + 

1 

2 

∂ 

∂xi 

∂ 

∂ x j 
Di j  (x)

]

Pss  (x) = 0 (5.93) 



5.3 P Representation 91 

If we define the probability current with components 

.Ji (x, t) = Ai (x)P(x, t) − 
1 

2 

∂ 

∂x j 
[Di j  (x)P(x, t)] (5.94) 

at steady state we have . J ss  (x) = 0, which implies 

.Di j  (x) 
∂ ln Pss  

∂x j 
= 2Ai (x) − 

∂ 

∂x j 
[Di j  (x)] (5.95) 

Writing .Pss  (x) = exp[−φ(x)] we need to solve 

. − 
∂φ(x) 

∂xi 
= 2(D−1)i j

[

A j − 
1 

2 

∂ D jk  

∂xk

]

≡ Fi (x) (5.96) 

(implicit summation over repeated indices). The form of this suggests we regard 

.F j (x) as a generalized force, and .φ(x) the corresponding potential. The system of 

equations (5.96) can be solved by integration if the so called potential conditions are 

satisfied 

. − 
∂2φ 

∂ xi ∂x j 
= 

∂ F j 

∂ xi 
= 

∂ Fi 

∂ x j 
= −  

∂2φ 

∂ x j ∂ xi 
(5.97) 

so that the function .φ(x) is well behaved and the multivariate integration is inde-

pendent of the path of integration. This is always true in one dimension. Given the 

potential conditions, the steady state solution is 

.Pss  (x) = Ne−φ(x) (5.98) 

with 

.φ(x) =
∫

dxi 2[D−1]i j
[

−Ai j  + 
1 

2 

∂ D jk  

∂ xk

]

dxi (5.99) 

(There is a sum over repeated indices.). For further discussion of the steady state 

solution in multivariate Fokker-Planck equations see [ 3]. 

In systems where the diffusion matrix is diagonal and constant .Di j  (x) = σδi j  the 

potential conditions become 

. − 
∂φ(x) 

∂ xi 
= 

2Ai (x) 

σ 
(5.100) 

Hence the turning points of the potential correspond exactly to the steady state 

solutions, that is the steady state solutions to the first-order moment equations. 

Turning to the time dependent solutions, in the case where the drift term is lin-

ear in the variables and the diffusion coefficient is a constant, a solution to the 
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Fokker–Planck equation may be found using the method of Wang and Uhlenbeck 

[ 4]. Consider the Fokker–Planck equation 

. 

∂ P(x) 

∂t
= −ai 

∂ 

∂xi 
(xi P(x)) + 

1 

2 
di j  

∂2 

∂xi ∂ x j 
P(x) (5.101) 

The Green’s function solution to this equation given by the initial condition 

.P(x, 0) = δN (x − x0) (5.102) 

is 

.P(x, t) =
[

π 
ndet[�(t)]

]−1/2 
exp

[

− (x − x̄(t))T · �−1 · (x − x̄(t))
]

(5.103) 

where 

.x̄ j (t) = x j0e
a j t (5.104) 

and 

.�i j  = − di j  

ai + a j 
[1 − e(ai+a j )t ] (5.105) 

The solution for a damped harmonic oscillator initially in a coherent state with 

.P(α, 0) = δ2(α − α0) is 

.P(α, t) = [π ̄n(1 − e−γ t ]−1 exp

[

−|α − α0e
−γ t/2|2 

n̄(1 − e−γ t )

]

(5.106) 

This represents an initial coherent state undergoing relaxation with a heat bath. Its 

coherent amplitude decays, and fluctuations from the heat bath cause its P-function to 

assume a Gaussian form characteristic of thermal noise. The width of the distribution 

grows with time until the oscillator reaches equilibrium with the heat bath. The steady 

state solution is the same as that given in (3.5). 

5.4 Q Representation 

The Q-function is defined by .Q(α) = 〈α|ρ|α〉. We can covert a master equation 

to an equation of motion for the Q-function by first normally ordering all operator 

products. Let . f (a, a†) be a function that can be expanded in a power series of . a and 

.a† then 

. [a, f (a, a†) ] =  
∂ f 

∂a† 
, (5.107) 

. [a†, f (a, a†) ] = −  
∂ f 

∂a 
. (5.108) 
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Noting that 

.ρa†a = a†ρa − [a†, ρ]a . (5.109) 

we use the results in above to write 

.ρa†a = a†ρa + 
∂ρ 

∂a 
a . (5.110) 

Then 

.〈α|ρa†a|α〉 =  α〈α|a†ρ + 
∂ρ 

∂a 
|α〉 (5.111) 

. =
(

|α|2 + α 
∂ 

∂α

)

Q(α) (5.112) 

Following this procedure we may convert the master equation in (5.57) into an 

equation for the Q function, 

. 

∂ Q 

∂t 
= 

γ 

2

(

∂ 

∂α 
α + 

∂ 

∂α∗ 
α∗

)

Q + 
γ 

2

[

M∗ 
∂2 

∂α∗ 2 
+ M 

∂2 

∂α2 
+ 2(N + 1) 

∂2 

∂α∂α∗

]

Q 

(5.113) 

This differs from the corresponding equation of motion for the P function only 

through the phase independent diffusion coefficient which is .N + 1 rather than . N . 

This is sufficient to give a positive definite diffusion matrix when the bath is in an 

ideal squeezed state, reflecting the fact that the Q function is always positive. 

As the diffusion matrix is positive definite we can immediately apply the method 

of Wang and Uhlenbeck to obtain the solution for an initial coherent state. The result 

is 

.Q(α, t) = (4π 
2det�(t))−1/2 exp[−1 

2 
u(t)T�−1

u(t)] (5.114) 

where 

.u(t) =
(

α − α0e
−γ t/2 

α∗ − α∗
0e

−γ t/2

)

e−γ t/2 (5.115) 

and 

. �(t) = 
1 

2

(

− sinh 2r cosh 2r + 1 

cosh 2r + 1 − sinh 2r

)

e−γ t +
(

M N  + 1 

N + 1 M∗

)

(1 − e−γ t ) 

(5.116) 

The variances for the quadrature phase operators for the oscillator are then easily 

found to be 

.V(X1) = (e−2r − 1)e−γ t + 2(N + ℜ(M))(1 − e−γ t ) + 1 (5.117) 

.V(X2) = (e−2r + 1)e−γ t + 2(N − ℜ(M))(1 − e−γ t ) + 1 (5.118) 

Note that the steady state variances are squeezed. 
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5.5 Wigner Representation 

We can convert the operator master equation into an equation of motion for the Wigner 

function. This is best accomplished by deriving an equation for the characteristic 

function, 

.χ(β)  = tr[D(α)ρ] (5.119) 

where .D(α) is the displacement operator (see Chap. 1). Thus 

. 

∂χ (β) 

∂t
= tr

[

D(α) 
dρ 

dt

]

(5.120) 

To illustrate the technique we shall derive the equation of motion for the Wigner 

function of a damped harmonic oscillator. Writing .D in normal order (see (1.32)) 

we get 

.a† D =
(

β∗ 

2 
+ 

∂ 

∂β

)

D (5.121) 

.Da = −
(

β 

2 
+ ∂ 

∂β∗

)

D (5.122) 

While writing .D in anti normal order (see (1.33)) we get 

.Da† =
(

− 
β∗ 

2 
+ 

∂ 

∂β

)

D (5.123) 

.aD  =
(

β 

2 
− ∂ 

∂β∗

)

D (5.124) 

Then using these rules the master equation (5.57) yields the following equation for 

the characteristic function 

. 

∂χ (β) 

∂t
= −γ 

2

(

|β|2 + β∗ 
∂ 

∂β∗ 
+ β 

∂ 

∂β

)

χ(β)  − γ N |β|2χ(β) (5.125) 

. = −  
γ M 

2 
β∗ 2χ(β)  − 

γ M∗ 

2 
β2χ(β) (5.126) 

The equation for the Wigner function is obtained by taking the Fourier transform of 

this equation as 

.W (α) =
∫

d2β eβ∗α−βα∗ 

χ(β) (5.127) 

Using constructions like 

.

∫

d2β eβ∗α−βα∗ 

β∗βχ (β) = −  
∂ 

∂α∂α∗ 
W (α) (5.128) 
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we find that 

. 

∂W 

∂t 
= 

γ 

2

(

∂ 

∂α 
α + 

∂ 

∂α∗ 
α∗

)

Q + 
γ 

2

[

M∗ 
∂2 

∂α∗ 2 
+ M 

∂2 

∂α2 
+ 2(N + 

1 

2 
) 

∂2 

∂α∂α∗

]

Q 

(5.129) 

A comparison of the three equations of motion for the P, Q and Wigner functions 

show that they differ only in the coefficient of the diffusion term being.γ N ,. γ (N + 1) 

and.γ (N + 1/2) respectively. However, the additional.+γ and.+γ /2 in the equations 

for the Q and Wigner function are sufficient to ensure that these equations have 

positive definite diffusion. We conclude that the Q and Wigner function must always 

be positive and Gaussian for the solutions to the master equation (5.57) if we start 

from a coherent state. 

5.6 Generalized P Representation 

In our study of nonlinear problems we shall find systems which either do not give 

Fokker–Planck equations in the Q and Wigner representations or no steady state 

solution may readily be found. For some systems a steady state solution in terms of 

a Glauber–Sudarshan P representation does not exist. For such systems the complex 

P representation is sometimes useful in deriving a steady state solution to Fokker– 

Planck equations. The positive P representation is useful when it is desirable to have 

a Fokker–Planck equation with a positive definite diffusion term, as is necessary in 

order to deduce the corresponding stochastic differential equations. 

Master equations may be converted to a c-number representation using the com-

plex P representation by an analogous set of operator rules used for the diagonal P 

representation. The state may be written as 

.ρ =
∫

D

�(α, β)P(α, β)dμ(α, β) (5.130) 

(see Chap. 3). The non-diagonal coherent state projection operator is defined as, 

.�(α, β) = 
|α〉〈β∗|
〈β∗|α〉 (5.131) 

The following identities hold 

.a�(α, β) = α�(α, β), a†�(α, β) =
(

β + 
∂ 

∂α

)

(5.132) 

.�(α, β)a† = β�(α, β) �(α, β)a =
(

α + 
∂ 

∂β

)

(5.133) 

By substituting the above identities into (5.130), defining the generalized P repre-

sentation, and using partial integration (providing the boundary terms vanish) these 
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identities can be used to generate operations on the P function depending on the 

representation. 

In the case of the complex P representation 

.aρ ↔ α P(α, β) , a†ρ ↔
(

β − 
∂ 

∂α

)

P(α, β) (5.134) 

.ρa† ↔ β P(α, β) , ρa ↔
(

α − 
∂ 

∂β

)

P(α, β) (5.135) 

This procedure yields a very similar equation to that for the Glauber–Sudarshan P 

function. We assume that, by appropriate reordering of the differential operators, we 

can reduce an operator master equation to an equivalent partial differential equation 

for .P(α, β, t). Define the column vector .α = (α, β)T . We need 

.

∫

C

∫

C ′
�(α, β) 

∂ P(α, β, t) 

∂t 
dαdβ = (5.136) 

=
∫

C

∫

C ′
�(α, β)P(α, β, t)

[

A j (α) 
∂ 

∂α j 

+ 
1 

2 
Di j  (α) 

∂ 

∂αi 

∂ 

∂α j

]

�(α, β) 

We now integrate by parts and if we can neglect boundary terms, which may be made 

possible by an appropriate choice of contours,.C, C ′, at least one solution is obtained 
by equating the coefficients of .�(α, β), 

. 

∂ P(α, β, t) 

∂t
=

[

−A j (α) 
∂ 

∂α j 

+ 
1 

2 

∂ 

∂αi 

∂ 

∂α j 

Di j  (α)

]

P(α, β, t) (5.137) 

This equation is sufficient to imply (5.136) but is not a unique equation because 

the .�(α, β) are not linearly independent. The Fokker–Planck equation has the same 

form as that derived using the diagonal P representation with .α∗ replaced by . β . It  

should be noted that for the complex P representation, .A j (α) and .Di j  (α) are always 

analytic in. α, hence if.P(α, β, t) is initially analytic (5.137) preserves this analyticity 

as time develops. 

In the case of the positive P representation, the differential representation rules 

remain the same. In addition, using the analyticity of .�(α, β) and noting that if 

.α = αx + i αy, β  = βx + iβy then 

. 

∂ 

∂α
�(α, β) = 

∂ 

∂αx

�(α, β) = −i 
∂ 

∂αy

�(α, β) (5.138) 

. 

∂ 

∂β
�(α, β) = ∂ 

∂βx

�(α, β) = −i 
∂ 

∂βy

�(α, β) (5.139) 
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Thus we also have 

.a†ρ ↔
(

β − ∂ 

∂αx

)

P(α, β) ↔
(

β + i 
∂ 

∂α

)

P(α, β) (5.140) 

.ρa ↔
(

α − ∂ 

∂βx

)

P(α, β) ↔
(

α + i 
∂ 

∂βy

)

P(α, β) (5.141) 

The positive P representation may be used to give a Fokker–Planck equation with a 

positive definite diffusion matrix. We shall demonstrate this in the following. 

We assume that the same (5.137) is being considered but with a positive P repre-

sentation. The symmetric diffusion matrix can always be factorized in the form 

.D(α) = B(α)B(α)T (5.142) 

We now write 

.A(α) = Ax (α) + i Ay(α) (5.143) 

.B(α) = Bx (α) + i By(α) (5.144) 

where .Ax , Ay, Bx , By are real. We then find that the master equation yields 

. 

∂ P(α, β, t) 

∂t
=

{

−∂ 
x 
j A 

j 
x (α) − ∂ 

y 

j A 
j 
y(α) + 

1 

2

[

∂ 
x 
i ∂ 

x 
j B

ik  
x (α)B 

jk  
x (α) (5.145) 

+2 
1 

2 
∂ 
x 
i ∂ 

y 

j B
ik  
x (α)B 

jk  
y (α) + 

1 

2 
∂ 
y 

i ∂ 
y 

j B
ik  
y (α)B 

jk  
y (α)

]}

P(α, β, t) 

Again, this is not a unique time-development equation. However, the Fokker– 

Planck equation now possesses a positive semidefinite diffusion matrix, in a four-

dimensional space, with vectors 

.α = (αx , αy, βx , βy) . (5.146) 

Problems 

5.1 Use the squeezed ME to calculate the equations for the quadrature phase ampli-

tudes. 

5.2 The photon number distribution for a laser may be shown to obey the master 

equation 

. 

dpn 

dt  
= An 

1 + n/ns 
pn−1 − 

A(n + 1) 

1 + (n + 1)/ns 
pn − γ npn + γ (n + 1) pn+1 (5.147) 



98 5 Open Quantum Systems 

where . A is related to the gain, .ns is the saturation photon number and . γ is the cavity 

loss rate. Use detailed balance to show that the steady state solution is 

.pss,n = N 
( Ans /γ )n 

(n + ns )!
(5.148) 

where .N is a normalisation constant. 

5.3 The interaction picture master equation for a damped harmonic oscillator, driven 

by a resonant linear force, is 

. 

dρ 

dt  
= iE[a + a†, ρ] +  γ D[a]ρ (5.149) 

Show that the steady state is a coherent state and find the amplitude. 

5.4 A model for phase diffusion of a simple harmonic oscillator is provided by the 

master equation 

. 

dρ 

dt  
= −Ŵ[a†a, [a†a, ρ]] (5.150) 

Show that the Q function obeys the Fokker–Planck equation 

. 

∂ Q 

∂t 
= Ŵ

2

(

∂ 

∂α 
α + ∂ 

∂α∗ 
α∗ + 2 

∂ 

∂α 

∂ 

∂α∗ |α|2 − 
∂2 

∂α2 
α2 − ∂2 

∂α∗ 2 
α∗ 2

)

Q (5.151) 

Thus show that while the mean amplitude decays the energy remains constant. Using 

polar coordinates, .α = reiφ , show that the model implies a diffusion process for the 

phase. 

5.5 Show that in terms of the quadrature operators . X1 = a + a†, X2 = −i (a − a†) 

the master equation (5.57) may be written 

. 

dρ 

dt  
= i 

γ 

8 
[X2, {X1, ρ}] − i 

γ 

8 
[X1, {X2, ρ}] (5.152) 

. − 
γ 

8 
e2r [X1, [X1, ρ]] − 

γ 

8 
e−2r [X2, [X2, ρ]] (5.153) 

where .{, } is an anticommutator and we have taken .N = sinh 2r , . M = sinh r cosh r 

for an ideal squeezed bath. Show that the first and second terms describe damping in 

.X1 and .X2 respectively, while the third and fourth terms describe diffusion in each 

quadrature phase amplitude. 
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6Classical and Quantum Langevin 
Equations 

Abstract 

In this chapter we give an alternative, but equivalent description of open quantum 

systems using a stochastic extension of Heisenberg’s equations of motion. This is 

analogous to Langevin’s description of Brownian motion. However care must be 

taken in the quantum case to ensure that the commutation relations of the system 

observables obey equal time commutation relations. This requirement is satisfied 

by using operator noise terms rather than classical fluctuating forces. We show 

how this provides a useful way to compute correlation functions for the field 

emitted by an open system, a source, into its environment via the input-output 

relations for fields scattered from the source. 

6.1 Stochastic Differential Equations 

The quantum master equation approach to open quantum systems is analogous to the 

classical description of Brownian motion given by Einstein. His description of dif-

fusion focusses on the time dependance of a classical probability density, while the 

quantum master equation focusses on the dynamics of the density operator. Langevin 

gave an alternative description which added fluctuating forces to Hamilton’s equa-

tions of motion for the Brownian particle. In this chapter we seek a quantum version 

of this approach. 

Consider the first order differential equation 

dX  

dt  
= α(X) + β(X)ξ(t) (6.1) 

where ξ(t) is a rapidly fluctuating stationary noise source. Stationary means that the 

two-time correlation function E[ξ(t)ξ(t + τ)] is independent of t and we assume

∫ ∞ 

−∞ 

dτ E[ξ(t)ξ(t + τ)] =  1 (6.2) 
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This implies that the units are: [α] = [X ]T −1 and [β] = [X ]T −1/2. 

Langevin assumed that, on time scales relevant to the system dynamical time 

scales, we can approximate the fluctuating forces by 

E[ξ(t)ξ(t ′)] =  δ(t − t ′) (6.3) 

E[ξ(t)] =  0 (6.4) 

This is a Markovian assumption for which correlation time of the noise is zero. The 

spectrum of the noise defined by 

S(ω) =
∫ ∞ 

−∞ 

dτ E[ξ(t)ξ(t + τ)]e−i ωτ (6.5) 

is independent of frequency. Clearly this is not physical as it would imply that 

the noise power is infinite. This entails a difficulty in interpreting (6.1) as a well 

defined physical description, mirrored as a mathematical difficulty. We have written a 

differential equation for X (t) assuming that the trajectories are differentiable however 

the assumed nature of the force terms is inconsistent with this assumption. 

One way to proceed is not to make the Markov assumption for the fluctuating 

forces by implementing a finite correlation time or a roll-off in the noise power 

spectrum. This leads to the Stratonovich approach to stochastic differential equations. 

While it is physically more reasonable, it makes calculations more difficult due to 

the non-zero correlation times for the noise. In particular it implies that the noise and 

the system state at equal time are correlated. 

Gardiner [ 1] addresses the problem in a set of assumptions: 

• The chain rule of standard calculus applies 
• The infinitesimal increment of a quantity is equal to its rate of change times dt. 
• The noise and the system state at equal time are independent. 

Stratonovich rule takes the third assumption as false. The Ito rule takes the first 

assumption as false. We will follow the Ito approach. 

We will summarise some of the rules required for Ito calculus. The Ito form 

corresponding to the Stratonovich form (6.1) is  

dX  = [α(X) + 
1 

2 
β(X)β ′(X)]dt  + β(X )dW  (t) (6.6) 

where dW  (t) is defined by the Wiener process 

W (t) =
∫ t 

t0 

ξ(t ′)dt ′ (6.7) 

Following Gardiner [ 1], we can show that W (t + �t) − W (t) is independent of 

W (s) for s < t and 

E[�W (t)2] = �t (6.8) 

E[�W (t)] =  0 (6.9) 
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Consider the Ito form dX  = a(X)dt  + b(X)dW  (t). The noise is independent of 

the system so that E[dX ] =  a(x)dt . Now consider dF(X ) using a modified chain 

rule 

d f  (X ) = f ′(X )dX  + 
1 

2 
f ′′(X)(dX)2 (6.10) 

where the prime indicates differentiation with respect to X . Anticipating that 

E[dW  (t)2] =  dt , we use the Ito form to write 

d f  (X ) = [  f ′(X)a(X) + 
1 

2 
f ′′(X)b(X)2]dt  + f ′(X )b(X)dW  (t) (6.11) 

For example, if f = X2, compute the increment in variance 

E[dX(t)2] −  d(E[X (t)])2 = b(X)2dt (6.12) 

As an example, consider the Ito SDE, dX  = a(t) + b(t)dW  . The solution is 

X(t) = X(0) +
∫ t 

0 

dsa(s) +
∫ t 

0 

b(s)dW  (s) (6.13) 

Then the covariance is, 

E[X(t1), X(t2)] ≡  E[X (t1)X (t2)] −  E[X(t1)]E[X (t2)] (6.14) 

and 

E[X (t1), X (t2)] =
∫ t1 

0

∫ t2 

0 

b(s))b(s′)E[dW  (s)dW  (s′)] (6.15) 

=
∫ min(t1,t2) 

0 

b(s)2ds (6.16) 

6.2 Quantum Stochastic Differential Equations 

We will consider a system-environment coupling in the rotating wave approximation 

and interaction picture of the form, 

V̂I P  (t) = i�

∫ ∞ 

0 

dω κ(ω)(ab(ω)†eiδt − a†b(ω)e−iδt )) (6.17) 

where a, a† are system bosonic operators and b(ω), b(ω)† are bosonic reservoir 

operators. δ = ω − 
. In Chap. 5 we saw that κ(ω) is slowly varying near the system 

frequency
 and is only non-zero in some finite band around this frequency. We take 

κ = κ(
) and write 
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b(t) =
∫ ∞ 

0 

dωb(ω)e−i (ω−
)t (6.18) 

with [b(ω), b†(ω′)] =  δ(ω − ω′). 
We now make a change of variable in the integration 

b(t) =
∫ ∞ 

−


dω′b(ω′ + 
)e−iω′t 

=
∫ ∞ 

−


dω′b̃(ω′)e−i ω′t 

where b̃(ω′) = b(ω′ + 
) which does not change commutation relations. If we 

assume that the bandwidth of the system-environment coupling is non-zero around 

the system frequency, 
, and that this frequency is very large, we make the approx-

imation 

b(t) =
∫ ∞ 

−∞ 

dω ̃b(ω)e−iωt (6.19) 

Then, [b(t), b†(t ′)] =  δ(t − t ′). 
We now write the Hamiltonian in the interaction picture as 

V̂I P  = i�
√

κ(ab†(t) − a†b(t)) (6.20) 

The unitary evolution operator for Schrödinger picture, U (t), is  

dU 

dt  
= 

√
κ(ab†(t) − a†b(t))U (t) (6.21) 

Now define 

B(t) =
∫ t 

−∞ 

dt ′b(t ′) (6.22) 

so that dB(t) = b(t)dt . We then see that 

dU (t) = U (t + dt) − U (t) = 
√

κ(ad B†(t) − a†dB(t))U (t) (6.23) 

This is interpreted as a quantum Ito differential equation. Taking the trace over the 

environment we see that 

tr[dB†(t)dB(t)] =  n̄dt (6.24) 

tr[dB(t)dB†(t)] =  (n̄ + 1)dt  

tr[dB(t)dB(t)] =  0 
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This looks a lot like what we would have if dB(t) is treated as a complex valued 

Wiener increment. We can make the trace over the bath implicit by simply defining 

dB†(t)dB(t) = n̄dt (6.25) 

dB(t)dB†(t) = (n̄ + 1)dt  

d B(t)dB(t) = 0 

In particular for zero temperature we write dB(t)dB†(t) = dt . For a more complete 

discussion of the quantum Ito calculus see [ 3]. 

We can now check the consistency of this approach with the master equation 

method of Chap. 5. We compute the change in the total state of the system over a 

time increment 

ρ(t + dt) = U (t + dt)ρ(0)U †(t + dt) 

= (U (t) + dU (t))ρ(0)(U †(t) + dU †(t)) 

= [1 + 
√

κ(ad B†(t) − a†dB(t) + 
κ 

2 
(ad B†(t) − a†dB(t))2] 

×ρ(t) × 

[1 − 
√

κ(ad B†(t) − a†dB(t) + 
κ 

2 
(ad B†(t) − a†dB(t))2] 

The system state at time t + dt  is then 

ρS(t + dt) = trE (ρ(t + dt)) 

= ρS(t) + 
√

κtr[(ad B†(t) − a†dB(t))ρ(t)] 
−

√
κtr[ρ(t)(ad B†(t) − a†dB(t))] 

+ 
κ 

2 
tr[(ad B†(t) − a†dB(t))2ρ] 

+ 
κ 

2 
tr[ρ(ad B†(t) − a†dB(t))2] 

−κtr[(ad B†(t) − a†dB(t))ρ(t)(ad B†(t) − a†dB(t))] 

This is the same form as derived in Chap. 5. 

We are now in a position to define quantum stochastic differential equations for 

a damped bosonic mode. We define 

a(t + dt) = U †(t + dt)a(0)U (t + dt) 

= [1 − 
√

κ(ad B†(t) − a†dB(t)) + 
κ 

2 
(ad B†(t) − a†dB(t)2] 

×a(t) × 

[1 + 
√

κ(ad B†(t) + a†dB(t) + 
κ 

2 
(ad B†(t) + a†dB(t)2] 

= a(t) − 
√

κ[(ad B†(t) − a†dB(t)), a(t)] 
+κ 

2 
[(ad B†(t) − a†dB(t)), [(ad B†(t) − a†dB(t)), a(t)]] 

= a(t) − 
√

κdB(t) − 
κ 

2 
a(t)dt  
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We thus find that 

da = −  
κ 

2 
a(t)dt  − 

√
κdB(t) (6.26) 

The solution is 

a(t) = a(0)e−κt/2 − 
√

κ

∫ t 

0 

e−κ(t−t ′)/2dB(t) (6.27) 

The mean photon number is

〈a†(t)a(t)〉 = 〈a†(0)a(0)〉e−κt + κ

∫ t 

0 

dt1

∫ t 

0 

dt2e
−κ(2t−t1−t2)/2〈dB†(t1)dB(t2)〉

(6.28) 

Now use the Ito rules to evaluate integral over 〈dB†(t1)dB(t2)〉 =  δ(t1 − t2),

∫ t 

0 

dt1

∫ t ′

0 

dt2 f (t1)g(t2)〈dB†(t1)dB(t2)〉 =  ̄n

∫ min(t,t ′) 

0 

dt1 f (t1)g(t1) (6.29) 

and

〈a†(t)a(t)〉 = 〈a†(0)a(0)〉e−κt + κ ̄n

∫ t 

0 

dt ′e−κ(t−t ′) (6.30) 

= 〈a†(0)a(0)〉e−κt + n̄(1 − e−κt ) (6.31) 

This agrees with (5.38). 

6.3 Input-Output Relations 

An apparently different approach to open quantum systems was introduced by Yurke 

and Denker [ 2] using infinite transmission lines for electronic circuits as illustrated in 

Fig. 6.1. This approach adopts a scattering theory perspective and we can adapt our 

approach to it by distinguishing input and output field operators in the environment. 

We regard the Heisenberg form of dB(t) as the output field, 

dBout = U †(dt)dB(t)U (dt) 

= [1 − 
√

κ(ad B†(t) − a†dB(t))]dB(t)[1 + 
√

κ(ad B†(t) − a†dB(t))] 
= dB(t) + 

√
κa(t)dt  

Writing dB(t) = ain(t)dt, dBout = aout (t)dt , we see that 

aout (t) = 
√

κa(t) + ain(t) (6.32) 

This is called the input-output relation in quantum optics. 
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Fig. 6.1 Left: A transmission line model of dissipation in a LC oscillator. Then local system is 

capacitively coupled to input and output fields that propagate away from the system never to return. 

Right: the equivalent optical scheme is a single-sided cavity 

The solution in (6.27), can now be written as 

a(t) = a(0)e−κt/2 − 
√

κ

∫ t 

0 

dt ′e−κ(t−t ′)/2dain(t
′) (6.33) 

We can check the equal-time canonical commutation relations using (6.27), 

[a(t), a†(t)] =  e−κt + κ

∫ t 

0 

dt1

∫ t 

0 

dt2e
−(κt−(t1+t2)/2)[ain(t1), a† in(t2)] (6.34) 

Note that, without the quantum noise term, the right hand side decays to zero. The 

quantum noise term should be treated as if it was a quantum version of the Ito stochas-

tic integral similar to (6.15) as  [a(t1), a
†(t2)] =  δ(t1 − t2). We then implement the 

Ito rule to evaluate the upper limit of the integrals as

∫ t 

0 

dt1

∫ t 

0 

dt2e
−(κt−(t1+t2)/2) δ(t1 − t2) =

∫ t 

0 

dt ′e−κ(t−t ′) (6.35) 

In which case we see that [ain(t), a† in(t)] =  1. It is easy to see that 

[a(t), ain(t)] =  0 . (6.36) 

If we specify the initial condition in the remote past we may write the solution as 

a(t) = −
√

κ

∫ t 

−∞ 

dt ′e−κ(t−t ′)/2ain(t
′) (6.37) 
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where we assume that the decay completely suppresses the dependance on the initial 

conditions. Recall that we are working in the interaction picture. Transforming back 

to the laboratory frame, 

a(t) = −
√

κ

∫ t 

−∞ 

dt ′e−(κ/2+i
)(t−t ′)ain(t
′) (6.38) 

We now use the approximation of (6.19) to write a(t), ain(t) as a Fourier transform 

we find that 

ã(ω) = 
−√

κ ̃ain(ω) 

κ/2 + i (
 − ω) 
(6.39) 

Combining this with the Fourier transform of (6.32), 

ãout (ω) = 
√

κ ̃a(ω) + ãin(ω) (6.40) 

we get 

ãout (ω) = −
[

κ/2 − i (
 − ω) 

κ/2 + i (
 − ω)

]

ãin(ω) (6.41) 

This implies that there is a frequency dependent phase shift between the input and 

output field. The intensity does not change in the long time limit. Every incident 

photon is eventually reflected. The short time solution is discussed below. 

6.3.1 Number State Input Fields 

As an example of the use of the quantum stochastic differential calculus we consider 

the case where the input field is prepared in a single photon pulse of the form given 

in (1.122), with N = 1 

|1ξ 〉 =
∫ ∞ 

−∞ 

dω ξ̃ (ω)ã
† 
in(ω)|0〉 . (6.42) 

we find that 〈a† in(t)ain(t)〉 = |ξ(t)|2. We will use as an example 

ξ(t) =
{√

γ e−γ t/2 t ≥ 0 

0 t < 0 
. (6.43) 

This is similar to the output field from a single sided cavity when a single photon is 

injected into the cavity at t = 0. 

After interacting with the cavity this state is transformed to 

|ψ〉out =
∫ ∞ 

−∞ 

dω ̃ξ(ω)ã
† 
out (ω)|0〉 . (6.44) 
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It is then easy to see that the probability per unit time to detect a single photon in the 

output field is

〈a† out (t)aout (t)〉 =
∣

∣

∣

∣

∫ ∞ 

−∞ 

dω

( κ 

2 
− i(
 − ω) 

κ 

2 
+ i(
 − ω)

)

ξ̃ (ω)e−iωt

∣

∣

∣

∣

2 

, (6.45) 

In the time domain the output pulse is a convolution of the input pulse and the cavity 

response. Thus the temporal pulse is phase shifted by δt and broadened. 

By ignoring transients in this calculation, we are effectively ignoring the pos-

sibility of reflection of photons reflected directly off the cavity from the source to 

detector. If the detector cannot distinguish these photons from those that enter the 

cavity to be re-emitted, an interference dip can occur in the overall detection rate as 

we now show. 

Using input-output relation, aout (t) = ain(t) + 
√

κa we see that

〈a† out (t)aout (t)〉 =  κ〈a†(t)a(t)〉 + 〈a† in(t)ain(t)〉 +  
√

κ〈a† in(t)a(t) + ain(t)a
†(t)〉
(6.46) 

The last term is an interference term between the two indistinguishable ways a 

photon can be detected: either it can be reflected directly from the input mirror into 

the detector or it can be absorbed by the cavity and remitted into the output field. 

Using (6.33), the rate of detection in the output field is determined by

〈a† out (t)aout (t)〉 =  κ〈a†(t)a(t)〉 +  γ e−γ t − 4κ 

γ − κ

(

e−(κ−γ )t/2 − 1
)

(γ e−γ t ) 

The first term is given by (5.72),

〈a†a〉 =  
4γ κ  

(γ − κ)2 
e−κt

(

1 − e−(γ −κ)t/2
)2 

. (6.47) 

This is plotted in Fig. 6.2. 

The output detection rate is zero at finite t . This is an interference effect due to 

the indistinguishablity of photons reflected from the cavity and transmitted by the 

cavity. In the long time limit we see that 〈a† out (t)aout (t)〉 = 〈a† in(t)ain(t)〉 consistent 
with long time limit in (6.41). 

6.3.2 Two Sided Cavity 

The situation depicted in Fig. 6.3 is a two-sided cavity. In this case there are two sets 

of input and output fields. The stochastic differential equation is 

da 

dt  
= −i
a − 

(κa + κb) 

2 
a(t) − 

√
κaain(t) − 

√
κbbin(t) (6.48) 
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Fig. 6.2 The output intensity for a single photon input to a one sided cavity at t = 0. Note the 

interference point where the rate goes to zero 

Fig. 6.3 A two-sided cavity 

with two sets of input and 

output fields. The total 

damping rate from the cavity 

is κ = κa + κb 

The relationship between the external and internal fields is 

ã(ω) = −  
(
√

κa ãin(ω) + 
√

κb b̃in(ω)) 

κ/2 + i (
 − ω) 
(6.49) 

where the total decay rate is κ = κa + κb. The input-output relations are 

aout (t) = ain(t) − 
√

κaa(t) (6.50) 

bout (t) = bin(t) − 
√

κbb(t) (6.51) 

Then 

ãout (ω) = −[κa − κb)/2 − i (
 − ω)]ãin(ω) + 
√

κaκb b̃in(ω) 

(κa + κb)/2 + i(
 − ω) 
(6.52) 

For a symmetric cavity κa = κb = κ this simplifies to 

ãout (ω) = 
i (
 − ω)ãin(ω) − κ ̃bin(ω) 

κ + i(
 − ω) 
(6.53) 
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6.4 Two-Time Correlation Functions 

Let c(t) be any system operator, then 

[c(t), 
√

κain(t)] =  
κ 

2
[c(t), a(t)] . (6.54) 

Since c(t) can only be a function of ain(t) for earlier times t ′ < t and the input field 

operators must commute at different times we have 

[c(t), ain(t ′)] =  0 t ′ > t (6.55) 

Similarly 

[c(t), aout (t ′)] =  0 t ′ < t (6.56) 

We then see that in general 

[c(t), 
√

κain(t
′)] =  κθ (t − t ′)[c(t), a(t ′)] (6.57) 

where 

θ(t) = 

⎧

⎨ 

⎩ 

1 t > 0 
1 
2 
t = 0 

0 t < 0 

(6.58) 

The commutator for the output field may now be calculated to be 

[aout (t), a† out (t ′)] = [ain(t), a† in(t
′)] (6.59) 

as expected. 

For the case of a coherent or vacuum input it is now possible to express vari-

ances of the output field entirely in terms of those of the internal system. For 

an input field of this type all moments of the form 〈a(t)ain(t
′)〉, 〈a†(t)ain(t ′)〉,

〈a† in(t)a(t ′)〉, 〈a† in(t)a†(t ′)〉 will factorise. Then,

〈a† out (t), aout (t)〉 =  κ〈a†(t), a(t)〉 (6.60) 

where we define 〈A, B〉 = 〈AB〉 − 〈A〉〈B〉. In this case there is a direct relationship 
between the two time correlation of the output field and the internal field. Consider 

now the phase dependent two time correlation function

〈aout (t), aout (t ′)〉 =  κ〈a(t), a(t ′)〉 −  
√

κ〈[ain(t ′), a(t)]〉 (6.61) 

= κ〈a(t), a(t ′)〉 +  κθ (t ′ − t)〈[a(t ′), a(t)]〉 (6.62) 

= κ〈a(max(t, t ′)), a(min(t, t ′))〉 (6.63) 

In this case the two time correlation functions of the output field are related to the 

time ordered two time correlation functions of the cavity field. 
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These results mean that the usual spectrum of the output field, as given by the 

Fourier transform of (6.60), will be identical to the spectrum of the cavity field. 

The photon statistics of the output field will also be the same as the intracavity 

field. A difference will arise in the phase-sensitive spectrum such as in squeezing 

experiments. 

6.5 Parametric Oscillator 

We now calculate the squeezing spectrum of the output of a parametric oscillator 

comprised of the degenerate parametric oscillator discussed in Sect. 4.1.1 inside 

an optical cavity. The system is stable so long as the amplifier gain is less than 

the damping rate. At some critical driving intensity, ‘threshold’, this breaks down. 

Below threshold the equations for the parametric oscillator are linear and hence we 

can directly apply the linear operator techniques. When the equations are nonlinear 

such as for the parametric oscillator above threshold, then linearization procedures 

must be used (see Chap. 8). 

Below threshold the pump mode of the parametric oscillator may be treated clas-

sically. It can then be described by the interaction picture Hamiltonian 

H = ��a†a + i
�

2 
(εa† 2  − ε∗a2) − i�

√
κ[b(t)a† − b†(t)a] (6.64) 

where a, a† are the bosonic operators for the cavity field, ε is proportional to the 

product of a coherent driving field and the nonlinear susceptibility of the medium, 

b(t), b†(t) are reservoir operators introduced in (6.19). The detuning from the pump 

frequency is defined as� = 
 − ωp/2 where
 is the cavity frequency. We consider 

here the case of a single ended cavity with loss rate κ . 

The quantum SDEs are 

d 

dt

(

a 

a†

)

=
(

−i� − 
κ 

2
ǫ

ǫ∗ i� − 
κ 

2

) (

a 

a†

)

− 
√

κ

(

ain  

a
† 
in

)

(6.65) 

The eigenvalues of the systematic part of this system are 

λ± = −κ 

2 
±

√

|ǫ|2 − 4�2 (6.66) 

The system has a stable fixed point at the origin if |ǫ| < 2� and unstable if |ǫ|2 > 

4�2 + κ2/4. In the frequency domain

(

ã(ω) 

ã†(ω)

)

= 
√

κ

(

−i (� − ω) − 
κ 

2
ǫ

ǫ∗ i(� − iω) − 
κ 

2

)−1 (

ãin(ω) 

ã
† 
in(ω)

)

(6.67) 

Combining this with the input-output relation in the frequency domain 

ãout (ω) = ãin(ω) − 
√

κ ̃a(ω) (6.68) 
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we find that 

ãout (ω) = μ(ω)ãin(ω) − ν(ω)  ̃a
† 
in(ω) (6.69) 

where 

μ(ω) = 1 − 
κ( 

κ 

2 
+ i (ω − �))

∣

∣i (� − ω) + 
κ 

2

∣

∣

2 − |ǫ|2 
(6.70) 

ν(ω) = κǫ
∣

∣i (� − ω) + 
κ 

2

∣

∣

2 − |ǫ|2 
(6.71) 

Notice that 

|μ(ω)|2 − |ν(ω)|2 = 1 (6.72) 

so that the linear transformation is a frequency dependent squeezing transformation. 

Suppose the output field is directed towards a balanced homodyne detection (see 

Sect. 7.3) that measures, in the lab frame, the quadrature amplitude 

Xθ (t) = Aout (t)e
−i(θ −
LO  t) + A

† 
out (t)e

i (θ−
LO  t) (6.73) 

where Aout (t), A
† 
out (t) are the positive and negative frequency components of the 

output field in the lab frame and where θ,
LO  are the phase-shift and frequency of 

the local oscillator with respect to the output field. This definition is equivalent to 

moving to an interaction picture at the frequency of 
LO . Setting 
LO  = ωp/2 the 

detuning becomes � = 
 − 
LO . In terms of the the interaction picture operators 

we are measuring the output field 

Xθ (t) = aout (t)e
−iθ + a

† 
out (t)e

iθ (6.74) 

We will assume the resonance condition � = 0. 

In Sect. 7.3.1 we show that the stationary noise power spectrum function of the 

homodyne current is given by 

Sθ (ω) = κ

∫ ∞ 

−∞ 

e−i ωτ 〈 :  Xθ (τ )Xθ (0) :〉ss (6.75) 

where : :  denotes time and normal ordering. 

Choosing the phase of the local oscillator to optimise the noise reduction in S2, 

we get the following results for the spectrum 

S2(ω) = 1 − 2κ|ǫ|
(

κ 

2 
+ |ǫ|

)2 + ω2 
(6.76) 

Shifting this phase choice by π/2 we get 

S1(ω) = 1 + 2κ|ǫ|
(

κ 

2 
− |ǫ|

)2 + ω2 
(6.77) 
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The maximum squeezing occurs at the threshold for parametric oscillation |ǫ| =  κ/2 

where 

S1(ω) = 1 +
( κ 

ω

)2 
(6.78) 

S2(ω) = 1 − 
κ2 

κ2 + ω2
(6.79) 

We see that the squeezing occurs in the quadrature which is π/2 out of phase with the 

pump. The fluctuations in the in-phase quadrature diverge at ω = 0. This is charac-

teristic of critical fluctuations which diverge at a critical point. As the fluctuations in 

one phase are reduced to zero the fluctuations in the other phase necessarily diverge. 

That would of course imply a divergence in the output energy, an unphysical result. 

This divergence is avoided by including pump depletion [ 4]. We will return to this 

problem in Chap. 8 

Problems 

6.1 A particle is moving in a quadratic potential and subject to viscous damping. 

The corresponding classical Ito stochastic differential equations are 

dx  = ydt (6.80) 

dy  = −xdt  − Ŵydt + σ dW  (t) (6.81) 

where x, y are (dimensionless) canonical position and momentum variables, and

Ŵ is a viscous damping rate, while where σ 
2 = 2mŴkB T and T is the ambient 

temperature. Define the kinetic energy as E = p2/2. Use the Ito rule to show that 

the average kinetic energy, Ē , obeys 

d Ē 

dt  
= −Ŵy2 + 

σ 
2 

2 
. (6.82) 

Thus show that the steady state average kinetic energy obeys the equipartition theo-

rem. 

6.2 A simple model of a quantum memory for a single photon pulse uses a con-

trollable coupling between two cavity modes, with one cavity otherwise uncoupled 

from the environment. The Hamiltonian is 

H = −i�
√

κ1[b1(t)a† 1 − b
† 
1(t)a1] −  i�g(t)[a1a† 2 − a

† 
1a2] (6.83) 

where
∫ ∞ 

−∞ 

|g(t)|2 = I (6.84) 

Find the long-time probability not to store a single photon pulse in (6.43). This is 

the error probability. Show that it is a minimum when g(t) = ξ(t). 
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6.3 A degenerate parametric oscillator in a double side cavity is described by the 

Hamiltonain 

H = ��a†a + i
�

2 
(εa† 2  − ε∗a2) − i�

√
κ1[b1(t)a† − b

† 
1(t)a] −  i�

√
κ2[b2(t)a† − b

† 
2(t)a] . 

(6.85) 

Calculate the optimum squeezing spectrum in this case. 
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7Quantum Measurement 

Abstract 

In this chapter we will introduce the theoretical description of continuous measure-

ments in quantum optics, including photon counting, homodyne and heterodyne 

measurement. Our objective is to show how the quantum theory of measurement 

provides a new perspective on irreversible quantum dynamics as we have treated 

it in the two preceding chapters. 

All measurement results are classical random variables available to any observer co 

located with the measurement instruments, or remote provided there is a communi-

cation channel of some sort. Quantum theory, like all physical theories, must provide 

statistical predictions for these random variables and tell us of how to consistently 

predict future measurement results given a record of previous results. In this way all 

initial conditions presuppose a measurement to define them. In Chap. 2 we intro-

duced the concept of a photon counting measurement and we return to this kind of 

experiment to begin. 

7.1 Single Shot Measurements 

All measurements are described by irreversible open systems. A simple model of a 

measurement can be given in terms of a system coupled to an apparatus. Initially 

the state of system+apparatus is separable. The state of the system is unknown but 

the state of the apparatus is given (and usually carefully prepared). The apparatus is 

coupled irreversibly to an environment. The result of a measurement is a classical 

random variable. 

As simple example is shown in Fig. 7.1. The system and the apparatus are two 

distinct modes of the electromagnetic field with bosonic annihilation operators . a, b 

respectively. In this simple example the interaction is a unitary transformation. The 

apparatus-mode is prepared in the same known pure state .|φ0〉 for every trial. The 
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Fig. 7.1 A simple measurement scheme. One mode a is the system to be measured and another 

mode b is the apparatus 

state of the system-mode is .|ψ〉 for every trial. The interaction between the two 

modes is defined by a unitary operator, .U (x), parameterised by a single real number, 

. x . Let us assume that in each trial the photon number is measured at the output of 

the apparatus mode and an integer . n is recorded. It is a random variable that varies 

from one trial to the next. What is the probability distribution for . n? 

Rather than give a detailed description of the irreversible nature of the photon 

counting process (see below) we simply assume it is an irreversible ‘event’ at the 

spacetime location of the detector. According to the Born rule, the probability dis-

tribution of measurement results is given by 

.P(n) = 〈n|ρb,o|n〉 , (7.1) 

where the reduced state of mode-b is 

.ρb,o = tr[U (x)|φ0〉〈φ0| ⊗ |ψ〉〈ψ|U †(x)] (7.2) 

Ṫhis may be written more compactly as 

.P(n) = tra[ ϒ̂† 
n ϒ̂n|ψ〉〈ψ|] , (7.3) 

where the operator acting on the state of mode-a is 

. ϒ̂n = 〈n|U (x)|φ0〉 , (7.4) 

This will be referred to as a Krauss operator. 

The conditional state of mode-a, given that the measurement result is . n, is given  

by 

.|ψ|n〉 = [P(n)]−1/2 ϒ̂(n)|ψ〉 (7.5) 

The unconditional state (the state averaged over all measurement results) is a mixed 

state, 

.ρ′ = 

∞
∑

n=0 

ϒ̂(n)|ψ〉〈ψ| ϒ̂†(n) (7.6) 

Let us now assume that .U (x) = e−i x  Ĝ where . Ĝ is an operator on the tensor 

product Hilbert space of both system and apparatus, and we assume that the apparatus 
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is prepared in the vacuum state .|φ0〉 = |0〉. As an example we consider, . G = a†b + 

ab†, called the Stokes model. In this case 

.ao = U †(x)aiU (x) = cos x ai − i sin x bi (7.7) 

.bo = U †(x)aiU (x) = cos x bi + i sin x ai . (7.8) 

This is equivalent to the beam spliter model in problem (2.1) with transmitivity 

.η = cos2 x . Using these equations we see that 

.〈b† 0b0〉 =  (1 − η)〈a† i ai 〉 (7.9) 

.〈(�b
† 
0b0)

2〉 =  (1 − η)2〈(�a
† 
i ai )

2〉 (7.10) 

where .� Â = Â − 〈 Â〉). 
In order to construct the Krauss operator we need to specify the apparatus state 

.|φ0〉. Let us assume it is a vacuum state so that 

. ϒ̂(n) = 〈n|e−i x(a†b+ab†)|0〉 , (7.11) 

Using the disentangling identity 

.e−i x(a†b+ab†) = e−iμab† eν(b†b−a†a)/2eiμa
†b (7.12) 

where .μ = tan x and .ν = −  ln(cos x). Thus 

. ϒ̂(n) = 
1√
n!

(1 − η)n/2(η)a
†a/2an (7.13) 

with .η = cos2 x . Thus 

.P(n) = 

∞
∑

m=0

(

m + n 

n

)

ηm (1 − η)n pm+n (7.14) 

where.pm = 〈m|ρa,i |m〉 is the photon number distribution of the input state to mode-

a. This is a Bernoulli deletion process in which the probability of deleting a single 

photon is .(1 − η) and every photon deleted is counted. It then follows that the mean 

and variance of the measurement results are 

.E[n] =  (1 − η)〈a† i ai 〉 (7.15) 

.V[n] =  (1 − η)2〈�(a
† 
i ai )

2〉 (7.16) 

as expected. 

Let us look at the conditional states, heralded by a particular count on the probe. 

We can also interpret this method as a photon subtraction scheme as the probe mode 

is always in the vacuum state, any count other than zero must subtract photons from 
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the signal mode. This is easily seen when the signal state is a number state. In the 

case of an initial coherent state for the signal we find that the state is unchanged. 

This is a typical result for a Poisson distribution. Subtracting a single photon from a 

squeezed vacuum state creates a cat-state. 

Another important case arises when the probe is prepared in a Fock state .|m〉 and 
the readout is . n [ 1]. This is the basis of linear optical quantum computing considered 

in Chap. 15. Define 

. ϒ̂(n|m) = 〈n|e−iθ(a†b+ab†)|m〉 , (7.17) 

Some examples are 

. ϒ̂(0|0) = 

∞
∑

n=0 

(cos θ − 1)n 

n! (a
† 
1 )

nan 1 =: e−ln(cos θ)a
† 
1a1 : 

ϒ̂(1|1) = cos θ Ê(0|0) − sin2 θa
† 
1 Ê(0|0)a1 

ϒ̂(0|1) = −a
† 
1 sin θ Ê(0|0) 

ϒ̂(1|0) = sin θ Ê(0|0)a1 

The Krauss operator . ϒ̂(0|1) is called a photon addition process. 
Another example is the two mode squeezing generator . Ĝ = −i (a†b† − ab), 

sometimes called the anti-Stokes model, and again assume that the apparatus is 

prepared in the vacuum state .|φ0〉 = |0〉. We use the disentangling theorem 

.e−r (ab−a†b†) = e− tanh ra†b† e− ln cosh r(a†a+b†b+1)etanh rab (7.18) 

to show that the Krauss operator for a count of . n on mode-b is 

. ϒ̂(n) = 
1√
n!

(− tanh r)na† 
n/2 

μaa†/2 (7.19) 

where .μ = sech2r . The corresponding POVM for this measurement is 

. ϒ̂†(n) ϒ̂(n) = 
(tanh r )2n 

n! (aa†)nμaa† (7.20) 

The probability for a measurement outcome . n can be written as 

.P(n) = tr
[

ϒ̂†(n) ϒ̂(n)ρ
]

= 

∞
∑

m=0 

p(n|m) pm (7.21) 

where .pm = 〈m|ρ|m〉 and the conditional probability is given by 

.p(n|m) =
(

m + n 

m

)

μ(m+1) (1 − μ)n (7.22) 
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the mean and variance of the measurement outcomes are 

.E[n] =  sinh2 r〈ai a† i 〉 (7.23) 

.V[n] =  sinh4 r V[ai a† i ]i + E[n] (7.24) 

Then measurement statistics are responding to the anti-normally ordered number 

operator for the signal. The square of the signal-to-noise, in the limit of .r → ∞, is  

.SN  R2 =
〈ai a† i 〉2 

V[ai a† i ]
(7.25) 

7.2 Continuous Measurement: Photon Counting Measurement 

Let us assume we have a single side cavity emitting radiation preferentially into 

one spatial output mode directed into a photon counter, see Fig. 7.2, and that every 

photon lost is counted. What is the conditional state of the cavity at time . t , when . n(t) 

photons have been counted? It is clearly not projected into the state .|n〉. Whatever 

state it started in, it must have . n photons less. 

At first sight, the master equation for the cavity field 

. 

dρ 

dt  
= κ(2aρa† − a†aρ/2 − ρa†a/2) (7.26) 

does not help us answer this question. However there is an interesting way to write 

solution to the master equation written in terms of the number of photon lost from 

the cavity [ 2, 3] 

.ρ(t) = 

∞
∑

n=0 

Nn(t)ρ(0) (7.27) 

Fig. 7.2 A single sided cavity emitting photon directed towards a photon counter. The cavity decay 

rate is . κ and .n(t) photons are counted in time . t after an initial state .|ψ(0)〉 was prepared in the 
cavity at .t = 0 
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where the super-operator is defined by 

.Nn(t)ρ =
∫ t 

0 

dtn

∫ tn 

0 

dtn−1 . . .

∫ t2 

0 

dt1S(t − tn)JS(tn − tn−1) (7.28) 

. . .  S(t2 − t1)JS(t1)ρ 

where 

.Jρ = κaρa† (7.29) 

.S(t)ρ = e−κta†a/2ρe−κta†a/2 (7.30) 

The operation .J is called the jump operation. This solution can be verified by 

differentiating with respect to time. We can confirm the interpretation of this form 

by considering the case.ρ(0) = |N 〉〈N |. Substituting and performing the time ordered 

integrals we get 

.ρ(t) = 

N
∑

n=0

(

N 

n

)

η(t)n(1 − η(t))N−n|N − n〉〈N − n|. (7.31) 

where 

.η(t) = 1 − e−κt (7.32) 

We used the important result 

.

∫ t 

0 

dtn

∫ tn 

0 

dtn−1 . . .

∫ t2 

0 

dt1 f (t1) f (t2) . . .  f (tn) = 
1 

n!

(∫ t 

0 

dt ′ f (t ′)

)n 

(7.33) 

This describes a Bernoulli deletion process in which . n photons are lost in time, . t 

leaving .N − n and the probability for each deletion is .η(t). As we assumed every 

photon lost is counted then the probability that .m photons are counted is 

.pn(t) =
(

N 

n

)

η(t)n(1 − η(t))(N −n) = tr [Nn(t)ρ] (7.34) 

We can interpret each term in (7.28) as the unnormalised conditional state of the 

cavity given that . m photons are counted where the normalisation is just .pn(t). Com-

paring this to (2.103) we see that when .κt ≪ 1 we can interpret .η(t) as the quantum 

efficiency for the continuous photon counting process. 

There is an alternative way to write the solution in (7.31), 

.ρ(t) = 

∞
∑

k=0 

ϒk (t)ρ(0)ϒ
† 
k (t) (7.35) 
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where 

.ϒk (t) = 
1√
k!

(η(t))k/2(1 − η(t))a
†a/2ak (7.36) 

The conditional state, given a count . k is 

.ρ(t |k) = [pk (t)]−1ϒk (t)ρ(0)ϒ
† 
k (t) (7.37) 

where 

.pk (t) = tr[ϒ† 
k (t)ϒk (t)ρ(0)] (7.38) 

The form in (7.35) represents a general representation for measurement processes 

[ 4]. The operators.ϒk are called Krauss operators, labelled by the measurement result 

. k. The Krauss form given in (7.35) is called the damping channel. It corresponds to 

the single shot measurement model discussed in the previous section. 

The count as a function of time for the situation depicted in Fig. 7.2 is a classical 

stochastic process, a Poisson process [ 6]. In a time interval between . t and .t + dt , we  

either get no counts or a single count. This is a classical random variable .dN  (t) such 

that .dN  (t)2 = dN  (t). We now define the infinitesimal Krauss operators for these 

mutually exclusive outcomes 

. M̂1(dt) = 

√
κdt  a (7.39) 

M̂0(dt) = 1̂ − ( R̂/2 + i Ĥ/�)dt  

where . Ĥ is the Hamiltonian and 

. R̂ = κa†a (7.40) 

which implies that 

. M̂
† 
0 (dt) M̂0(dt) + M̂

† 
1 (dt) M̂1(dt) = 1̂. (7.41) 

to linear order in . dt . 

The probability for the result .dN  (t) = 1 is 

.p1(dt) = Tr[J[ M̂1(dt)]ρ] =  κdt tr[a†aρ], (7.42) 

while the probability for the result .dN  (t) = 0 is 

.p0(dt) = Tr[J[ M̂0(dt)]ρ] =  1 − κdt tr[a†aρ], (7.43) 

For almost all infinitesimal time intervals, the measurement result is .dN  (t) = 0, a  

null result. 

The state at time .t + dt , averaging over all possible results, is 

.ρ(t + dt) =
∑

r 

J[ M̂r (dt)]ρ(t). (7.44) 
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where 

.J[ Â]ρ = Âρ Â† (7.45) 

When .dN  (t) = 1, the state vector changes to 

.|ψ1(t + dt)〉 = M̂1(dt)|ψ(t)〉
√

〈M̂† 
1 (dt) M̂1(dt)〉

= 
a|ψ(t)
√

〈a†a〉
(7.46) 

If there is no detection, .dN  (t) = 0, 

.|ψ0(t + dt)〉 = M̂0(dt)|ψ(t)〉
√

〈M̂† 
0 (dt) M̂0(dt)〉

(7.47) 

. =
{

1 − dt

[

i H/� + 
1 

2 
κa†â − 

1 

2 
κ〈a†a〉

]}

|ψ(t)〉, (7.48) 

where the denominator has been expanded to first order in .dt  to yield the term, 

.〈a†a〉|ψ(t)〉 = 〈ψ(t)|a†a|ψ(t)〉|ψ(t)〉 which is non linear in the conditional state at 
time . t . 

We can write this in terms of .dN  (t) as the stochastic evolution equation, 

.d|ψ(t)〉 =
[

dN  (t)

(

a
√

〈a†a〉
− 1

)

(7.49) 

. +dt

(

κ〈a†a〉
2 

− 
κa†a 

2 
− i Ĥ /�

)]

|ψ(t)〉. (7.50) 

As this preserves the purity of the state we refer to it as a stochastic Schrödinger 

equation (SSE). Purity is preserved as we have complete information about the 

measurement record in terms of .dN  (t). If the system started as a mixed state, we 

would not be able to write this as a stochastic equation for a pure state but a stochastic 

master equation. It takes the form 

.dρc(t) = −  
i

�
[H , ρc(t)]dt  + dN  (t)G[a]ρc(t) − 

1 

2 
κdtH[a†a]ρc(t) (7.51) 

where we define the super operators 

.G[A]ρ = AρA† 

tr[AρA†] − ρ (7.52) 

.H[A]ρ = Aρ + ρA† − tr[Aρ + A†ρ]ρ (7.53) 
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In the interaction picture, without coherent driving, the stochastic differential 

equation for the conditional photon number distribution .pc,n = 〈n|ρc|n〉 is given by 

.dpc,n = dN  (t)

(

(n + 1)pc,n+1 

n̄c 
− pc,n

)

− κdt(n − n̄c) pc,n (7.54) 

where 

.n̄c = 

∞
∑

n=0 

npc,n (7.55) 

is the conditional mean of the photon number. Averaging over the noise gives the 

unconditional master equation 

. 

dpn 

dt  
= κ(n + 1)pn+1 − κnpn (7.56) 

The conditional mean photon number then obeys the stochastic differential equa-

tion 

.d n̄c = dN  (t)

(

Vc[n] 
n̄c 

− 1

)

− κdt  Vc[n] (7.57) 

this becomes deterministic if the conditional distribution is Poissonian. Then, if the 

system starts in a Poisson distribution (e.g., a coherent state), it remains in a coherent 

state. If the system starts in a number state, the variance is zero and the conditional 

dynamics is entirely stochastic 

.d n̄c = −dN  (t) (7.58) 

indicating that the conditional photon number decreases by one every time a photon 

is counted. 

7.2.1 Output Correlations Functions for Photon Counting 

The output current from direct detection is given by 

.I (t) = r

∫ t 

−∞ 

e−r(t−t ′)dN  (t ′) (7.59) 

where . r is an inverse response time determined by the circuit in which the photo-

electron counter is embedded and we have set the electric charge.e = 1. This measures 

the current in units of photoelectrons per second. This is stochastic process with mean 

current given by 

.E[I (t)] =  rκ

∫ t 

−∞ 

e−r (t−t ′)〈a†(t ′)a(t ′)〉dt ′ (7.60) 
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In the limit of of fast response .r ≫ κ this is approximated by 

.E[I (t)] =  κ〈a†(t)a(t)〉 (7.61) 

We now define the stationary two-time correlation function as the average current 

at time .τ > t given a photon was counted at time . t . This is a conditional average and 

is given by [ 4], 

.E[I (t + τ )I (t) = tr[a†aeLτ aρ(t)a†] +  tr[a†aρ(t)]δ(τ ) (7.62) 

The first term has the following interpretation. At time . t the system state is .ρ(t) at 

which point one photon was counted. The unnormalised conditional state given this 

event is .aρ(t)a†. We then evolve the state forward under the dissipative dynamics, 

ignoring all counts, and ask for the rate of detecting a photon at time .t + τ . The last 

term arises as, at .τ = 0, .dN  (t)2 = dN  (t) and corresponds to the shot noise term. At 

finite response rate . r , the delta-function becomes bounded function. Finally, if there 

is a stationary state, we can substitute .ρ(t) → ρss  where .Lρss  = 0. 

7.3 Continuous Measurement: Homodyne and Heterodyne 
Detection 

Continuous photon counting is a measurement of the intensity of the field emitted 

by the source. We can also make direct measurements of the electric field emitted by 

a source. This requires a phase and frequency reference called the local oscillator. 

We will agin consider the source to be a single side cavity. 

Phase-dependent measurement is based on optical interference as discussed in 

Sect. 2.9. A signal field, with carrier frequency .�s is mixed with a strong coherent 

field—the local oscillator (LO)—with carrier frequency .�LO  on a 50/50 beam split-

ter. A relative phase shift is introduced between the signal and LO. If .�s = �LO  we 

have homodyne detection. If the signal and LO carrier are detuned, we have hetero-

dyne detection. The output from the beam splitter are directed onto photo-detectors 

and the resulting signal currents are combined on a signal processor that outputs a 

difference current; the measurement signal. The scheme is depicted in Fig. 7.3. 

We will assume that the source of the signal is a single-sided cavity with line-

width . κ. The corresponding conditional master equation for homodyne detection is 

[ 4] 

.dρc(t) = −  
i

�
[H , ρc]dt  + κD[a]ρc(t)dt  + 

√
κdW  (t)H[ae−iφ]ρc(t) (7.63) 

where .dW  (t) is the Weiner increment, the phase-shift between the signal and the 

LO is . φ, and the super operators are defined in (7.53). The corresponding homodyne 

current satisfies the Ito stochastic equation 

.J (t)dt  = κ〈ae−iφ + a†eiφ〉cdt  + 
√

κdW  (t) (7.64) 
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Fig. 7.3 A balanced homodyne or heterodyne detection scheme for making phase-dependent mea-

surements on a signal field .a(t) using a strong coherent field called the local oscillator, . ELO  (t) 

depends on the conditional average of the quadrature amplitude operator 

.ae−iφ + a†eiφ for the cavity field. 

In the case of the difference current is modulated at the detuning frequency . � =
�s − �LO . We then form the Fourier components in the signal processing 

.Jx (t) = 
1 

δt

∫ t+δt 

t 

2 cos(�s)J (s)ds (7.65) 

.Jy(t) = −  
1 

δt

∫ t+δt 

t 

2 sin(�s)J (s)ds (7.66) 

To lowest order in the averaging time .δt these are given by 

.Jx (t)dt  = κ〈a + a†〉dt  + 

√
2κdWx (t) (7.67) 

.Jy(t)dt  = −iκ〈a − a†〉dt  + 

√
2κdWy(t) (7.68) 

where .dWx (t), dWy(t) are independent Weiner increments. It is conventional to 

combine these into a single complex measurement current 

.Jhet dt  = 
1 

2 
(Jx (t) + i Jy(t))dt  = κ〈a〉dt  + 

√
κdZ(t) (7.69) 

where we define the complex Weiner increment, 

.dZ  (t) = 
1√
2 
(dWx (t) + idWy(t)) (7.70) 
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The corresponding conditional master equation is 

.dρc(t) = −  
i

�
[H , ρc]dt  + κD[a]ρcdt  + 

√
κH[dZ∗(t)a]ρc (7.71) 

7.3.1 Squeezing Spectrum 

In the laboratory the noise power spectrum of the homodyne and heterodyne current 

give important information on the quantum noise in the output field and enable us 

to define the squeezing spectra calculated in Sect. 6.5. We first define the two-time 

correlation function for the homodyne current in the case of a photo-detector with 

very fast response time. As in the case of direct photo currents this is effectively a 

conditional average. It is given by [ 4] 

. E[Jhom (t + τ )Jhom (t)] =  κ2tr
[

X̂θe
Lτ

(

aρ(t)eiθ + ρ(t)a†e−iθ
)]

+ κδ(τ ) 

(7.72) 

where 

. X̂θ = aeiθ + a†e−iθ (7.73) 

The stationary two-time correlation function is obtained by .ρ(t) → ρss  where 

.Lρss  = 0. The corresponding stationary spectrum is defined by 

.Shom (ω)/κ = lim 
t→∞

∫ ∞ 

−∞ 

dτe−iωτ 
E[Jhom (t + τ )Jhom (t)] (7.74) 

. = 1 +
∫ ∞ 

−∞ 

dτe−iωτ tr
[

X̂θe
Lτ

(

aρsse
iθ + ρssa

†e−iθ
)]

(7.75) 

This is known as the squeezing spectrum. 

In the case of heterodyne detection, the stationary two-time correlation function 

is [ 4] 

.E[Jhet (τ )∗ Jhet (0)] =  κtr[a†eLτ aρss] +  κδ(τ ) (7.76) 

the first term is Glauber’s first-order coherence function .G(1) (τ ) in the steady state. 

The stationary power spectrum is 

.P(ω) = 
κ 

2π

∫ ∞ 

−∞ 

dτ e−iωτ tr[a†eLτ aρss] (7.77) 

Integrating this over all frequencies gives the total flux as .P = κ〈a†a〉ss . 
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7.4 Continuous Measurement: Non-absorbing Photon 
Detection 

We can use the homodyne detection process to design a non absorbing photon detec-

tor. The first step is to couple the signal cavity to a probe cavity via the cross-Kerr 

interaction 

.HK = �χa†ab†b (7.78) 

where.a, b are the annihilation operators for the signal and probe cavity modes respec-

tively. This describes a mutual phase shift of each mode proportional to the photon 

number in the other mode. The interaction Hamiltonian commutes with the free 

Hamiltonian for each mode. In order to configure the probe mode as a measurement 

apparatus we need to add a coherent driving term that is detuned by . � = ωb − ωd 

from the probe cavity frequency. The total interaction Hamiltonian then takes the 

form. 

.HI = ��b†b + �ǫ(b + b†) + �χa†ab†b (7.79) 

Including dissipation the master equation for the signal-probe, the total master equa-

tion is 

. 

dρ 

dt  
= −  

i

�
[HI , ρ] +  κaD[a]ρ + κbD[b]ρ (7.80) 

The corresponding quantum Langevin equations are 

. 

da 

dt  
= −i (� + χb†b)a − 

κa 

2 
a + 

√
κaain (7.81) 

. 

db 

dt  
= −iχa†ab − iǫ − 

κb 

2 
b + 

√
κbbin (7.82) 

We assume that the probe cavity is strongly damped, .κb ≫ κa, χ, and thus the probe 

dynamics is slaved to the signal mode. This enables us to use adiabatic elimination 

of the probe mode from the dynamics. In the absence of the cross Kerr coupling the 

probe mode relaxes to a coherent state with amplitude 

.β0 = −  
2iǫ

κb 

(7.83) 

To lowest order in . χ this leads to a shift in the detuning of the signal mode 

.� → � + χ|β0|2. (7.84) 

There is also a fluctuating component contribution to the detuning due to number fluc-

tuations in the probe mode number. As this is approximated by a coherent state with 

amplitude. β0, these fluctuations are Poisson distributed. This means the frequency of 

the signal mode is fluctuating and should be described by the phase diffusion model 

(10.32). 
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We can incorporate both the systematic and noise contributions by the replacement 

.b → β0(1 − 
2iχ 

κb 

a†a) (7.85) 

This makes it clear that the signal number implements a phase shift on the probe 

mode. We can then use homodyne detection on the probe output to effect a signal 

number measurement that is not based on absorption. 

To lowest order in . χ the stochastic master equation for the probe takes the form, 

. 

dρ 

dt  
= −  

i

�
[Ha, ρ] +  κaD[a]ρ + ŴD[a†a]ρ + 

√
ŴdWH[a†a]ρ (7.86) 

where 

.Ŵ = 
4χ2|β0|2 

κb 

(7.87) 

and we have made an appropriate change of phase for the LO phase shift. The 

corresponding homodyne current is 

.J (t)dt  =
√

κbŴ

(

n̄c(t)dt  +
√

1

Ŵ
dW  (t)

)

(7.88) 

where 

.n̄c(t) = tr〈a†a〉c (7.89) 

is the conditional mean number. This makes it clear that the signal-to noise-ratio 

improves as . Ŵ increases. 

The Lindbald term proportional to .Ŵ diagonalises the density operator in the 

eigenstates of the probe number, the measured operator, at the rate .Ŵ/2. This is 

what one expects for a continuous measurement of photon number. As a large signal 

to noise ratio corresponds to large .Ŵ we see that the better the measurement the 

faster the diagonalisation. The stochastic dynamics tends to force the system into an 

eigenstate of photon number. To see this we can use the stochastic master equation 

to write a stochastic Markov process for the conditional number distribution of the 

signal mode .pc,n = 〈n|ρ|n〉. Ignoring the free dynamics, we find that 

.dpc,n = κa(n + 1) pc,n+1 − κnpc,n + 

√
Ŵ(n − n̄c)pc,ndW  (t) (7.90) 

The conditional mean thus obeys the stochastic differential equation 

.d n̄c(t) = −κa n̄c(t)dt  + 

√
ŴVc[n]dW (7.91) 

where .Vc[n] is the conditional variance in the population number. If the system ends 

up in a number state, this equation becomes deterministic. If we can approximate 

the conditional state by a Poisson distribution the resulting stochastic differential 

equation corresponds to geometric Brownian motion, a key equation in financial 

mathematics. The conditional mean is entirely deterministic, a defining idea in the 

definition of a quantum non demolition measurement (QND). 
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7.5 Quantum Non Demolition Measurements (QND) 

The concept of quantum nondemolition measurements was introduced in the context 

of detection of gravitational waves [ 8]. Gravitational waves interact so weakly with 

terrestrial detectors that a displacement of the order of .10−19 cm is expected. This 

requires the detection of very weak forces, below the level of quantum noise in the 

detector. 

The basic requirement of a QND measurement is the availability of a variable 

which may be measured repeatedly giving predictable results in the absence of exter-

nal forces. Clearly this requires that the act of measurement itself does not degrade 

the predictability of subsequent measurements. Then, in a sufficiently long sequence 

of measurements, the output becomes predictable. This requirement is satisfied if for 

an observable .AI (t) (in the interaction picture) 

.[AI (t), AI (t ′)] =  0 (7.92) 

The condition ensures that if the system is in an eigenstate of .AI (t0) it remains 

in this eigenstate for all subsequent times although the eigenvalues may change. 

Such observables are called QND observables. Clearly constants of motion will be 

QND observables.The continuous, non absorbing number measurement discussed 

in Sect. 7.4 is an example. 

Having first determined the QND variables of the detector it is necessary to couple 

the detector to a readout system or meter. It is essential that the coupling to the meter 

does not feed back fluctuations into the QND variable of the detector. In order to 

avoid this it is sufficient if the QND variable .A commutes with the Hamiltonian 

coupling the system and the apparatus 

.[A, HSA] =  0 (7.93) 

This is known as the back action evasion criterion. In this chapter we are primarily 

concerned with QND measurements on optical systems. This requires a slight change 

in nomenclature. We will refer to the field with respect to which the QND variable is 

defined as the ‘signal’ rather than the system, and the field upon which measurements 

are ultimately made as the ‘probe’ rather than the apparatus. 

In the case of a harmonic oscillator, we can define two canonically conjugate 

operators that are explicitly time dependent in the Schrödinger picture, 

.X1(t) = aei�t + a†e−i�t (7.94) 

.X2(t) = −i(aei�t + a†e−i�t ) (7.95) 

These are constants of motion as 

. 

dX  j (t) 

dt
= −i�[a†a, X j (t)] +  

∂ X j (t) 

∂t
= 0 (7.96) 
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7.6 Criteria for a QND Measurement 

We need to clearly define the objectives of a quantum nondemolition measurement 

in an optical context. These objectives may differ depending on the situation of the 

measurement. For example, in a transmission with a series of receivers, the goal may 

be to tap information from the signal, without degrading the signal transmitted to the 

next receiver. In a system used to measure the magnitude of an external force the goal 

of the measurement may be state preparation. That is an initial measurement prepares 

the system in a known quantum state. The presence of the perturbing force will be 

detected by a subsequent measurement on the system. In order to evaluate the merits 

of a measurement scheme we shall define a set of criteria for a good measurement. We 

begin by considering the general measurement scheme depicted in Fig. 7.4 where an 

observable .X in  of the input signal is determined by a measurement of an observable 

.Yout of the output probe. 

The measurement may be characterised by the following criteria: 

1. How good is the measurement scheme? 

This is determined by the level of correlation between the probe field measured 

by a detector and the signal field incident on the apparatus. The appropriate 

correlation function is, 

.C[X in, Yout ] =  
|〈X inYout 〉S − 〈X in〉〈Yout 〉|2 

V[X in]V[Yout ]
(7.97) 

where .〈AB〉S ≡ 〈AB  + BA〉/2 and .V[A] = 〈A2〉 − 〈A〉2 is the variance of . A. 
For a perfect measurement device the phase quadrature of the probe output is 

equal to the amplitude quadrature of the signal input multiplied by the QND gain, 

plus the input probe phase quadrature. In this case the correlation coefficient 

defined above is unity, for large gain. 

2. How much does the scheme degrade the signal? 

The quantity of interest here is the correlation between the signal input field and 

the signal output field: 

.C[X in, Xout ] =  
|〈X in  Xout 〉S − 〈X in〉〈Xout 〉|2 

V[X in]V[Xout ]
(7.98) 

This is a measure of the back action evasion, that is the ability of the scheme to 

isolate quantum noise introduced by the measurement process from the observable 

Fig. 7.4 General scheme for a QND measurement in an optical context. The actual observed value 

on the probe output is . y, a random variable 
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of interest. For an ideal QND scheme we require this correlation to be unity. Thus, 

for a perfect QND scheme we have 

.C[X in, Yout ] +  C[X in, Xout ] =  2 (7.99) 

3. How good is the scheme as a state preparation device? 

If we have a perfect measurement device that does not degrade the signal at all, we 

satisfy the two previous criteria exactly. These criteria can be calculated regardless 

of the actual measurement result. They refer to the unconditional moments of the 

output state. The ideal for a QND measurement is that given a measurement result 

we should be able to predict the conditional result of future measurements. We 

need to determine the conditional states after the measurements conditioned on the 

measurement result, say . y, to answer this question. The ideal case would see the 

conditional state of the signal become an eigenstate of the measured quantity. This 

may be impossible, for example in the case of the QND observables.X1(t), X2(t). 

Thus as a measure of how well the scheme prepares eigenstates at the output we 

need to consider the conditional variance .V[Xout |y]. In Sect. 7.1 we saw that the 
conditional state of the signal is given in terms of the Krauss operator . ϒ̂(y) 

.ρ 
(y) 
S,out = 

ϒ̂(y)ρS,in  ϒ̂
†(y) 

P(y) 
(7.100) 

where the distribution of measurement results is 

.P(y) = tr[ ϒ̂†(y) ϒ̂(y))ρS,in] (7.101) 

The conditional variance is then given by 

.V[Xout |y] =  tr[ρ 
(y) 
S,out X

2] −  E[Xout |y]2 (7.102) 

where the conditional mean is given by 

.E[Xout |y] =  tr[ρ 
(y) 
S,out X ] (7.103) 

In many cases of interest we are dealing with Gaussian states and one can show (see 

Exercise 7.5) that the conditional variance does not depend on the measurement 

result, then 

.V[Xout |y] =  V[Xout ](1 − C[Xout , Yout ]) (7.104) 

where 

.C[Xout , Yout ] =  
|〈Xout Yout 〉S − 〈Xout 〉〈Yout 〉|2 

V[Xout ]V[Yout ]
(7.105) 

Thus, the condition for a perfect state reduction in these cases is 

.C[Xout , Yout ] →  1 (7.106) 
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As an example we consider a perfect QND measurement of the quadrature phase 

of a single mode field.We shall assume that the amplitude quadratures of each mode 

are coupled with the interaction Hamiltonian 

.HI = �χ(a + a†)(b + b†) = �χXa Xb (7.107) 

where .a/b is the annihilation operator for the signal/probe, and . Xa = a + a†, Xb = 

b + b† are the signal and probe quadratures respectively. Clearly .Xa is a constant of 

the motion and a QND variable. The interaction is also back action evading. Solving 

the Heisenberg equations of motion over a time . T we get 

.Xa,out = Xa,in (7.108) 

.Yb,out = Yb,in  + GXa,in (7.109) 

where .Yb = −i(b − b†) is canonically conjugate to .Xb and the gain is .G = 2χT . 

We will refer to .Xa as the signal quadrature and assume it has a non zero mean. We 

will treat .Yb as the probe quadrature and assume it has zero mean. 

Clearly .C[Xa,in, Xa,out ] =  1 and the signal quadrature is unaffected by the mea-

surement. The correlation 

.C[X in, Yout ] = G2
V[Xa,in] 

G2V[Xa,in] +  V[Yb,in]
(7.110) 

If the gain is very large.C[X in, Yout ] →  1. The conditional variance of the output, 

given a result . y of a perfectly accurate measurement of .Yb,out is independent of . y 

and given by 

.V[Xout |y] =  V[Xa,in]
(

1 − G2
V[Xa,in] 

G2V[Xa,in] +  V[Yb,in]

)

(7.111) 

. ∼ V[Yb,in] 
G2

(7.112) 

For large .G ≫ 1 this goes to a very small number. In the limit of high QND gain 

this device operates as a good state preparation device. 

Finally, the performance of the measurement is the signal-to-noise ratio squared 

of the probe output 

.SN  R2 = 〈Yb,out 〉2 
V[Yb,out ]

(7.113) 

. = G2〈Xa,in〉2 
G2V[Xa,in] +  V[Yb,in]

(7.114) 

. → 〈Xa,in〉2 
V[Xa,in] 

G ≫ 1 (7.115) 
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Fig. 7.5 Schematic representation of a perfect QND scheme based on a parametric interaction 

In the limit of large QND gain the signal-to-noise ratio of the output probe is equal 

to that of the signal input. 

It is possible to achieve a QND coupling of this form using beam splitters 

.a → 
√

ηa + i
√

1 − η2 b , (7.116) 

and parametric amplification.g = er , see Fig. 7.5. When the beam splitter parameters 

can be matched to the gain by 

.η = 
(g + 1)2 

2(g2 + 1) 
(7.117) 

the transformations are given by the ideal case in (7.108) 

.G = (g − g−1) (7.118) 

This experiment was first performed by LaPorta et al. [ 9]. 

7.7 Single-Shot QND Measurements of Photon Number 

We return to the case of QND number measurements. The number operator is a con-

stant of motion for a harmonic oscillator and thus a QND observable. The objective 

is to estimate the number of photons in a single cavity in fixed time interval without 

absorbing or exciting photons in the cavity. This requires that the interaction between 

the cavity and a probe is back action evading. See the experiment of Besse et al. [ 10]. 

Problems 

7.1 If the cavity starts in a coherent state .|α〉 use (7.35) to show that it remains in a 

coherent state but the amplitude decays as .e−κt/2α. 

7.2 Use (7.35) to consider the conditional states produced when the signal is prepared 

in a 
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a A coherent state 

b A squeezed vacuum state, 

c A thermal state. 

7.3 Use (7.19) to consider the conditional states produced when the signal is prepared 

in a 

a A coherent state 

b A squeezed vacuum state, 

c A thermal state. 

7.4 Show that if the single-side is empty up to time .t = 0 at which point one photon 

is injected into the cavity, the mean current is 

.E[I (t)] =  κ 
(e−κt − e−r t  ) 

1 − κ/r 
(7.119) 

In the limit of infinite response rate this is simply .κe−κt for .t > 0. 

7.5 Let the Krauss operator for the QND measurement in Sect. 7.6 be given by 

. ϒ̂(y) = (2π�)−1/4e−( X̂−y)2/4� (7.120) 

and the input state be diagonal in.X in  so that.PS,in(x) = 〈x |ρS,in|x〉where. X in|x〉 =  

x |x〉. Find .V[Xout |y] and show that it is independent of . y. Further show that 

.C[Xout , Yout ] = σ

� + σ 
(7.121) 

which goes to unity when the .� ≪ σ. This means that the noise added by the probe 

is negligible. 
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8Nonlinear Quantum Dissipative 
Systems 

Abstract 

In this chapter we go beyond the linear quantum stochastic differential equations 

to treat non linear intracavity interactions. It is not possible, in general, to find 

exact solutions to the nonlinear quantum equations which arise in nonlinear opti-

cal interactions. It has, however, been possible to find solutions to some specific 

systems using the complex P representation. These solutions provide a test of the 

region of validity of the linearised solutions especially in the region of an instabil-

ity. Furthermore they allow us to consider the situation where the quantum noise 

is large and may no longer be treated as a perturbation. In this case, manifestly 

quantum mechanical states may be produced in a nonlinear dissipative system. 

8.1 Parametric Oscillator with Pump Depletion 

We can give a quantum treatment of the parametric oscillator with a quantised pump 

mode using the generalised P representation. This is an interaction between the 

cavity field at frequency . ω and a pump mode at frequency .2ω. It is often referred 

to as sub/second harmonic generation. We shall first solve for the steady state of the 

cavity mode (the sub-harmonic mode) using the complex P function when the pump 

mode can be adiabatically eliminated when it undergoes rapid damping. Then we 

show, using the positive P function, that the steady state sub-harmonic field is in a 

superposition state. We go on to calculate the tunnelling time between the two states 

in the superposition. 

We consider the degenerate parametric oscillator with quantised pump described 

Drummond et al. [ 1]. The Hamiltonian is 

.H = �ωa
† 
1a1 + 2�ωa

† 
2a2 + i�

κ 

2 
(a

† 2  
1 a2 − a2 1a

† 
2 ) (8.1) 

+i�(ǫa
† 
2e

−2iωt − ǫ∗a2e
2i ωt ) 

+a1Ŵ
† 
1 + a2Ŵ

† 
2 + a

† 
1Ŵ1 + a

† 
2Ŵ2 
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where .a1 and .a2 are the annihilation operators for two cavity modes of frequency . ω 

and .2ω, respectively. The coupling constant for the nonlinear coupling between the 

modes is . κ . The cavity is driven externally by a coherent driving field with frequency 

.2ω and amplitude . ε2. The bosonic bath operators describing the cavity damping of 

the two modes are.Ŵ1, Ŵ2. The quantum Langevin equations in the interaction picture 

are 

. 

da1 

dt  
= κa

† 
1a2 − γ1a1 +

√

2γ1a1,in (8.2) 

. 

da2 

dt  
= −  

κ 

2 
a
† 2  
1 − γ2a2 + ǫ +

√

2γ2a2,in (8.3) 

(Note that we have changed the convention for damping rates so that the line width 

of the cavity is .2γ1. This is the convention used in [ 1]). The corresponding master 

equation is 

. 

dρ 

dt  
= −  

i

�
[H , ρ] +  2γ1D[a1]ρ + 2γ2D[a2]ρ (8.4) 

The equation of evolution in the generalised P representation is 

. 

∂ P(α) 

∂t 
=

{

∂ 

∂α1 
(γ1α1 − κβ1α2) +

∂ 

∂β1 
(γ1β1 − κα1β2) (8.5) 

+ 
∂ 

∂α2 
(γ2α2 − ǫα1 − κα1β2) + 

∂ 

∂β2 
(γ2β2 − ǫ∗α1 + 

κ 

2 
β2 
1 ) 

+ 
1 

2

(

∂2 

∂α2 
1 

(κα2) + 
∂2 

∂β2 
1 

(κβ2)

)}

P(α) 

The semiclassical deterministic equations of motion are 

. 

dα1 

dt  
= κα∗

1 α2 − γ1α1 (8.6) 

. 

dα2 

dt  
= −  

κ 

2 
α∗2 
1 − γ2α2 + ǫ (8.7) 

there are two stable steady state solutions depending on whether the driving field 

amplitude is above or below the threshold amplitude .εc = γ1γ2/κ . In particular, the 

steady states for the low frequency mode .α1 are 

.α1 = 0 ǫ < ǫc (8.8) 

.α1 = ±
[

2 

κ 
(ǫ − ǫc)

]1/2 

(8.9) 

The Fokker-Planck equation does not satisfy the potential conditions so we cannot 

easily find the steady state. However if we adiabatically eliminate the pump mode (the 

mode at frequency.2ω) we get a Fokker-Planck equation that does satisfy the potential 

conditions. We proceed by adiabatically eliminating the high-frequency mode. This 
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may be accomplished best in the Langevin equations equivalent to Fokker-Planck 

equation. These are 

. 

d 

dt

(

α1 

β1

)

=
(

κβ1α2 − γ1α1 + 
√

κα2η1(t) 

κα1β2 − γ1β1 + 
√

κβ2η2(t)

)

d 

dt

(

α2 

β2

)

=
(

ǫ2 − 
κ 

2 
α2 
1 − γ2α2

ǫ∗
2 − 

κ 

2 
β2 
2 − γ2β2

)

where .η1(t), η2(t) are noise terms that satisfy 

. 〈η1(t)〉 = 〈η2(t)〉 = 〈η1(t)η1(t ′)〉 = 〈η2(t)η2(t ′)〉 =  0, 〈η1(t)η2(t ′)〉 =  δ(t − t ′). 

Under the conditions .γ2 ≫ γ1 we can adiabatically eliminate .α2, β2 which gives the 

resultant Langevin equation for the cavity mode alone, 

. 

d 

dτ

(

α 

β

)

=
(

−α − β(λ − α2) 

−β − α(λ − β2)

)

+

(

g
√

(λ − α2) η1(t) 

g
√

(λ − β2) η2(t)

)

(8.10) 

where we have changed variables .τ = γ1t, α  = gα1, β  = gβ1 with 

.g =
κ

√
2γ1γ2 

≡ 
1 

μ 
(8.11) 

The Fokker–Planck equation corresponding to these equations is 

. 

∂ P(α, β) 

∂τ
=

{

∂ 

∂α

[

α + β(λ − α2)
]

+ 
∂ 

∂β

[

β + α(λ − β2)
]

(8.12) 

+
g2 

2 

∂2 

∂α2

[

(λ − α2)
]

+ 
g2 

2 

∂2 

∂β2

[

(λ − β2)
]

}

P(α, β) 

As the potential conditions are satisfied the steady state solution is then given by 

.Pss  (α, β) = N
[

(λ − α2)(λ − β2)
]1/g2−1 

e2αβ/g2 (8.13) 

It is clear that this function diverges for the usual integration domain of the com-

plex plane with .β1 = α∗
1 . The moments may, however, be obtained by use of the 

complex P representation and complex contour integration. The calculations are 

described in [ 2]. 

The semi-classical solution for the intensity exhibits a threshold behaviour at 

.ǫ = ǫc = γ1γ2/κ . This is compared in Fig. 8.1 with the mean intensity . I = E[βα] 
calculated from the solution (8.13). The quantum calculation shows a feature never 

observed in a classical system where the mean intensity actually drops below the 

semi-classical intensity. This deviation from the semi-classical behaviour is most 

significant for small threshold photon numbers. As the parameter .ǫc = γ1γ2/κ is 

increased the quantum mean approaches the semi-classical value. 
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Fig.8.1 Plot of the mean intensity for the degenerate parametric oscillator versus the scaled driving 

field.λ = ǫ/ǫc. The dashed curve represents the semi-classical intensity, the solid curve is the exact 

quantum result. In both cases .2ǫc/κ = 100. Note that above threshold the exact quantum result is 

less than the semi-classical prediction 

Fig. 8.2 The log of the normally ordered variance of the squeezed (solid) and unsqueezed (dashed) 

quadrature in a degenerate parametric amplifier versus the scaled driving field with .2ǫc/κ = 5.0. 

See [ 3] 

The normally ordered variance of fluctuations in the quadratures . X1 = a + a† 

and .X2 = −i (a − a†) are given by the integration of the steady state P function, 

again using contour integration, for the variables .(α + β)/2 and .−i (α − β)/2. The 

variance in the quadratures is plotted in Fig. 8.2 versus the scaled driving field 

.λ = ǫ/ǫc. The variance in the phase quadrature, .X2 reaches a minimum at threshold. 

This minimum approaches.1/2 as the threshold intensity is increased [ 3]. The value of 

one half in the variance of the intracavity field corresponds to zero fluctuations found 

at the resonance frequency in the external field. The fluctuations in the amplitude 

quadrature .X1 increase dramatically as the threshold is approached.However, unlike 

the calculation in section (6.5), where the pump is treated classically, the fluctuations 

do not diverge. This is because (8.13) is an exact solution to the nonlinear interaction 

including pump depletion. As the threshold value increases and therefore the number 

of pump photons required to reach threshold increases, the fluctuations become 
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larger. In the limit .γ1γ2/κ
2 → ∞  the fluctuations diverge, as this corresponds to 

the classical pump (infinite energy). The variance in the amplitude quadrature above 

threshold continues to increase as the distribution is then double-peaked (see (8.8)) 

at the two stable output amplitudes. 

This solution demonstrates the usefulness of the complex P representation. 

Although the solution obtained for the steady state distribution has no interpreta-

tion in terms of a probability distribution, the moments calculated by integrating the 

distribution on a suitable manifold correspond to the physical moments. We have 

demonstrated how exact moments of a quantized intracavity field undergoing a non-

linear interaction may be calculated. To calculate the moments of the external field 

however, we must resort to linearization techniques. 

8.1.1 Cat State Formation in the Parametric Oscillator 

The two . π out of phase solutions to the semiclassical steady states, (8.8), suggests 

that the quantum steady state may exhibit cat state characteristics. This is indeed the 

case and can be shown using the positive P representation. Following the treatment 

of Wolinsky and Carmichael [ 4], we can obtain an analytic solution for the steady 

state positive P function. This solution is a function of two phase space variables; 

one variable is the classical field amplitude, the other is a non-classical variable 

needed to represent superpositions of coherent states. A three-dimensional plot of 

the positive P function allows one to distinguish between the limiting regions of 

essentially classical behaviour and predominantly quantum behaviour. 

The Langevin equations are the same as (8.10) but the domain of the variables 

.α, β is different and describe trajectories in a four-dimensional phase space. The 

region of phase space satisfying the conjugacy condition .β = α∗ is called the clas-

sical subspace. Two extra non-classical dimensions are required by the quantum 

noise. If we neglect the noise the deterministic equations have the stable steady 

states as we saw. In the new variables these become (i) .α = β = 0 below thresh-

old, .(λ < 1), and .α = β = ±(λ − 1)1/2 above threshold .(λ > 1). In the full phase 

space there are additional steady states which do not satisfy the conjugacy condi-

tion: two steady states .α = β = ±i (1 − λ)1/2 below threshold and two steady states 

.α = −β = ±(λ + 1)1/2 both below and above threshold. 

The variables . α and . β are restricted to a bounded manifold .α = x, β  = y with 

.x, y both real, and .|x |, |y| ≤  

√
λ. Denote this manifold by .�(x, y). Trajectories are 

confined within this manifold by reflecting boundary conditions. If a trajectory starts 

within this manifold, then it is clear that the drift and noise terms remain real, so a 

trajectory will remain on the real plane. Furthermore, at the boundary, the trajectory 

must follow the deterministic flow inwards, as the transverse noise component van-

ishes. If the initial quantum state is the vacuum state, the entire subsequent evolution 

will be confined to this manifold. 

The manifold.�(x, y) is alternatively denoted by.�(u, v)with.u = (x + y)/2 and 

.v = (x − y)/2. The line.v = 0 is a one-dimensional classical subspace, the subspace 

preserving.α = β. The variable. v denotes a transverse, non-classical dimension used 
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by the noise to construct manifestly non-classical states. We may now construct a 

pictorial representation of these states which dramatically distinguishes between the 

quantum and classical regimes. 

With .α = x and .β = y, both real, the solution to the Fokker-Planck equation is 

of the form given by (8.13), with .|x |, |y| ≤  

√
λ, 

.Pss  (x, y) = N
[

(λ − x2)(λ − y2)
]1/g2−1 

e2xy/g
2 

(8.14) 

For weak noise .(g ≪ 1) we illustrate .Pss  (x, y) in Fig. 8.3 threshold (.λ <  1), 

.Pss  (u, v)  may be written 

.Pss  (u, v)  = 
(1 − λ2)1/2 

πλg/2 
exp

[

−
(1 − λ)u2 + (1 + λ)v2 

λg2/2

]

(8.15) 

The normally ordered variance of fluctuations in the quadratures .X1 = a + a† and 

.X2 = −i(a − a†) are given by the integration of the steady state P function to 

compute the variances .V[(α + β)/2] and .V[−i (α − β)/2]. As  .u = (α + β)/2 and 

.v = (α − β)/2, on the manifold .�(u, v), the quadrature variances are given by 

.〈: �X2 
1 :〉 = V[u]/g2 (8.16) 

.〈: �X2 
2 :〉 = −V[v]/g2 (8.17) 

indicating squeezing as we have already seen. It is interesting that a non zero variance 

for the non classical variable, . v, is necessary for squeezing. 

The threshold distribution (.g ≪ 1, λ  = 1) is given by  

.Pss  (u, v)  =
√

16π g3 Ŵ(1/4)e−(u4+4v2)/g2 (8.18) 

Above threshold the distribution splits into two peaks.We note that in the low-noise 

regime .Pss  (x, y) is a slightly broadened version of the classical steady state with 

only a small excursion into the nonclassical space. 

Figure 8.4 shows .Pss  (x, y) for the same values of . λ as Fig. 8.3 but for the noise 

strength .g = 1. The quantum noise has become sufficiently strong to explore thor-

oughly the non-classical dimension of the phase space and is strongly influenced by 

the boundary .�(x, y). 

As the noise strength g is increased beyond 1, the characteristic threshold 

behaviour of the parametric oscillator disappears and squeezing is significantly 

reduced (Fig. 8.5). In the large-. g limit the stochastic trajectories are all driven to 

the boundary of .�(x, y), and then along this boundary to the corners, where both 

noise terms vanish and.Pss  (x, y) approaches a sum of. δ functions. When. 4λ/g2 ≪ 1 

all. δ functions carry equal weight and the state of the subharmonic field is the coherent 

pure state superposition of coherent states—cat states of the form 

. 

1
√
2

[

|
√

λ/g〉 + | −  

√
λ/g〉

]

(8.19) 
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Fig. 8.3 A plot of the positive P representation of the steady state of the degenerate parametric 

amplifier, below and above threshold: a .λ = 0.8 b .λ = 1.5. In both cases . g = 0.25 

As . λ increases, this superposition state is replaced by a classical mixture of coherent 

states .{|
√

λ/g〉, | −  

√
λ/g〉} for .4λ/g2 ≫ 1. This is a consequence of the competi-

tion between the creation of quantum coherence by the parametric process and the 

destruction of this coherence by dissipation. 

8.1.2 Dissipative Quantum Tunnelling 

In the classical theory of stochastic processes in double well potentials, similar 

multi-peaked distributions arise in the steady state. However when such a sys-

tem is continuously monitored we see a sequence of stochastic jumps between the 

wells with the dwell times in each well determined by the switching rates between 

wells [ 5]. The switching rates are given by Kramer’s rule. The stochastic switching 
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Fig. 8.4 As in Fig. 8.3 but 

with quantum noise 

parameter .g = 1.0. 

a .λ = 0.8 b . λ = 1.5 

Fig. 8.5 As in Fig. 9.3 but 

with .λ = 1.5 and . g = 10 

is in the classical case determined by thermal noise The stochastic switching turns 

out to be critical to understanding the stochastic thermodynamics of such systems. 

Similar considerations apply to the quantum case but now the switching is entirely 

due to quantum noise at zero temperature. This is called dissipative quantum tun-

nelling. In order to see this in the lab, one needs to make continuous measurements 

of the emitted field amplitudes via homodyne or heterodyne detection when the sys-

tem has reached the steady state. Rather than pursue this approach here we adopt a 
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method due to Kinsler and Drummond [ 6] that adapts the method used in the classical 

approach to first passage times. 

In order to calculate the quantum tunnelling rate, we shall transform the variables 

.α, β to give constant diffusion, or additive stochastic noise, 

.u = sin−1

(

gα
√

λ

)

+ sin−1

(

gβ
√

λ

)

, (8.20) 

.v = sin−1

(

gα
√

λ

)

− sin−1

(

gβ
√

λ

)

. (8.21) 

These new variables are constrained to have a range such that .|u| + |v| ≤  π . 

Referring back to the variables . α and . β, it can be seen that the . u axis represents the 

classical subspace of the phase space where .α = β. Thus the variable . v is a non-

classical dimension which allows for the creation of quantum features. The stochastic 

equations corresponding to these variables are 

.du =
{

λ sin(u) − σ

[

tan

(

u + v 

2

)

+ tan

(

u − v 

2

)]}

dτ +
√

2gdWu, (8.22) 

.dv =
{

−λ sin(v) − σ

[

tan

(

u + v 

2

)

− tan

(

u − v 

2

)]}

dτ +
√

2gdWv. (8.23) 

Here .σ = 1 − g2/2, dWu, dWv are Wiener processes. 

These Ito equations have a corresponding Fokker-Planck equation and a proba-

bility distribution in the limit as .τ → ∞  of 

.P(u, v)  = N exp[−V (u, v)/g2] (8.24) 

where the potential .V (u, v)  is 

.V (u, v)  = −2σ ln | cos u + cos v| +  λ cos u − λ cos v. (8.25) 

Above threshold the potential has two minima corresponding to the stable states 

of the oscillator. These minima have equal intensities and amplitudes of opposite 

sign, and are at classical locations with . α = α∗ 

.(u0, v0) =
(

±2 sin−1[(λ − σ)1/2/
√

λ], 0
)

(8.26) 

or 

.gα0 = ±(λ − 1 + g2)1/2. (8.27) 

There is also a saddle point at .(us , vs ) = (0, 0). 
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Along the . u axis the second derivative of the potential in the . v direction is always 

positive. The classical subspace (.v = 0) is therefore at a minimum of the potential 

with respect to variations in the non-classical variable . v. This valley along the . u axis 

between the two potential wells is the most probable path for a stochastic trajectory 

in switching from one well to the other. The switching rate between them will be 

dominated by the rate due to trajectories along this route. Using an extension of 

Kramer’s method, developed by Landauer and Swanson [ 7], the mean time taken for 

the oscillator to switch from one state to the other in the limit of .g2 ≪ 1 is 

.Tp = 
π 

γ1

(

λ + σ 

λ(λ − σ)2

)1/2 

exp

{

2 

g2

[

λ − σ − σ ln

(

λ 

σ

)]}

. (8.28) 

The switching time is increased as the pump amplitude . λ is increased or the 

nonlinearity .g2 is reduced. 

Previous attempts to compute the tunnelling time for this problem have used the 

Wigner function [ 8]. Unfortunately the time-evolution equation for the Wigner func-

tion contains third-order derivative terms and is thus not a Fokker–Planck equation. 

In the case of linear fluctuations around a steady state truncating the evolution equa-

tion at second-order derivatives is often a good approximation. However, it is not 

clear that this procedure will give quantum tunnelling times correctly. 

In the limit of large damping in the fundamental mode the truncated Wigner 

function of the sub-harmonic mode obeys with . τ = γ1t 

. 

d 

dτ 
W (β, t) =

{

∂ 

∂β 
[β − β∗(λ − g2β2)] +

∂ 

∂β∗ [β∗ − β(λ − g2β∗2)] (8.29) 

+
∂2 

∂β∂β∗ 
(1 + 2g2ββ∗)

}

W (β, τ ). 

This truncated Wigner function equation does not have potential solutions, how-

ever an approximate potential solution can be obtained that is valid near threshold. 

Here, the noise contribution .2g2ββ∗ is small and is neglected leaving only subhar-

monic noise. Writing .β = x + i p, the solution in the near threshold approximation 

is 

.WNT  = NNT  exp[−VNT  (x, p)] (8.30) 

where 

.VNT  (x, p) = 
2 

g2

[

g2x2 + g2 p2 + 
1 

2 
(g2x2 + g2 p2)2 − λ(g2x2 − g2 p2)

]

(8.31) 

and .NNT  is the normalisation constant. 

Above threshold this potential has two minima, at .gx = ±(λ − 1)1/2. In the limit 

of large-threshold photon numbers, these minima are very close to those obtained 
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in (8.27). The tunneling time has been calculated from the Wigner distribution by 

Graham [ 8], with the result 

.Tw = 
π 

γ1

(

λ + 1 

λ(λ − 1)2

)1/2 

exp

[

1 

g 
(λ − 1)2

]

. (8.32) 

This result is compared with the expression derived using the .P function in Fig. 

8.6 which shows the variation in the logarithm of the tunnelling rate with the pump 

amplitude . λ. The Wigner function result predicts a slower switching time above 

threshold. The difference in the two predictions can be many orders of magnitude. 

The calculations from the exact positive .P Fokker–Planck equation represent a true 

quantum tunnelling rate. Whereas the truncation of the Wigner function equation 

involves dropping higher order derivatives dependent on the interaction strength . g. 

Thus nonlinear terms in the quantum noise are neglected and the only quantum 

noise terms included are due to the vacuum fluctuations from the cavity losses. 

These give a diffusion term in the truncated Wigner Fokker–Planck equation which 

is identical to classical thermal noise, with an occupation number of half a photon 

per mode. Also indicated in Fig. 8.6 are the tunnelling times computed by direct 

numerical simulation of the stochastic differential equations resulting from either 

the positive .P representation (Fig. 8.6a, b) or the Wigner representation (Fig. 8.6c, 

d) and by directly solving the master equation in the number basis. 

The differences between the two rates obtained reflect the difference between 

classical thermal activation and true quantum tunnelling. Classical thermal-activation 

rates are slower than quantum tunnelling rates far above threshold where the former 

are large since the thermal trajectory must go over the barrier. A quantum process, 

on the other hand, can short cut this by tunnelling. 

8.2 Dispersive Optical Bistability 

We consider a single mode model for dispersive optical bistability [ 9]. An optical 

cavity is driven off resonance with a coherent field. The intracavity medium has an 

intensity dependent refractive index. As the intensity of the driving field is increased 

the cavity is tuned to resonance and becomes highly transmissive. 

We shall model the intracavity medium as a Kerr type.χ 
(3) nonlinear susceptibility 

treated in the rotating wave approximation. The Hamiltonian is given by (5.79). The 

Fokker–Planck equation is 

. 

∂ P 

∂t 
=

[

∂ 

∂α 
(κα + 2i χα2β − E0) − iχ 

∂2 

∂α2 
α2 (8.33) 

+ 
∂ 

∂β 
(κ∗β − 2iχβ2α − E0) + iχ 

∂2 

∂β2 
β2

]

P(α, β) 
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)b()a( 

)d()c( 

Fig. 8.6 A plot of the log of the tunnelling time for the degenerate parametric amplifier above 

threshold, versus pump strength or noise strength. In a and b we show the results computed by the 

positive. P Representation (PB approximation) while in c and d we give the results for the truncated 

Wigner function model. In all cases we contrast the results obtained by potential methods with 

the results obtained by direct simulation of the corresponding stochastic differential equations and 

number state solution of the master equation (dashed line) [ 6] 
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where we choose the phase of the driving field such that.E0 is real and.κ = γ + i δ.We  

shall seek a steady state solution using the potential conditions (6.72). The calculation 

of .F gives 

.F1 = −
(

i 

χ

) (

κ̄ 

α 
+ 2χβ − 

E0 

α2

)

, F2 =
(

i 

χ ∗

)(

κ̄∗ 

α 
− 2χ 

∗β − 
E0 

β2

)

, (8.34) 

where we have defined .κ̄ = κ − 2i χ . The cross derivatives 

.∂α F2 = ∂β F1 = 1 (8.35) 

so that the potential conditions are satisfied. 

The steady state distribution is given by 

.Pss  (α, β) = exp

[

∫ α′

α 

Fp(α
′)dα′

]

(8.36) 

. = exp

[

∫ α′

α

(

1 

i χ

(

κ̄ 

α1 
+ 2i χβ1 − 

E0 

α2 
1

)

dα1 − 
1 

i χ

(

κ̄∗ 

β1 
− 2i χα1 − 

E0 

β2 
1

)

dβ1

)]

(8.37) 

. = αcβ−2 exp

[(

E0 

i χ

) (

1 

α 
+ 

1 

β

)

+ 4αβ

]

(8.38) 

where .c = 
κ̄ 

i χ 
, d =

(

κ̄ 

iχ

)∗ 

. 

It can be seen immediately that the usual integration domain of the complex plane 

with .α∗ = β is not possible since the potential diverges for .αβ → ∞. However, the 

moments may be calculated using the complex .P representation. The results for the 

mean amplitude .〈α〉 and correlation function .g(2) (0) are plotted in Fig. 8.7 where 

they are compared with the semi-classical value for the amplitude .αss . 

It is seen that, whereas the semi-classical equation predicts a bistability or hys-

teresis, the exact steady state equation which includes quantum fluctuations does 

not exhibit bistability or hysteresis. The extent to which bistability is observed in 

practice will depend on the fluctuations, which in turn determine the time for ran-

dom switching from one branch to the other. The driving field must be ramped in 

time intervals shorter than this random switching time in order for bistability to be 

observed. 

The variance of the fluctuations as displayed by .g(2) (0) show an increase as the 

fluctuations are enhanced near the transition point. The dip in the steady state mean 

at the transition point is due to out-of-phase fluctuations between the upper and lower 

branches. 
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Fig. 8.7 The steady state amplitude, and second-order correlation function for optical bistability 

versus the pump amplitude. The chain curve gives the semi-classical steady state amplitude. The full 

curve gives the exact steady state amplitude. The broken curve presents the second-order correlation 

function .g(2) (0). The detuning is chosen so that .�ωχ < 0 with .�ω = −10 and . χ = 0.5 

8.2.1 Comment on the Use of the . Q and Wigner Representations 

We will compare the above solution we have obtained with the generalised .P repre-

sentation with the equation obtained using the .Q and Wigner representations. With 

the .Q representation we obtain the following equation 

. 
∂ Q(α∗, α)  

∂t
=

[

∂ 

∂α 
(−E0 + κ̄α + 2i χα2α∗) + i χ 

∂2 

∂α2 
α2 +

(

κ̄ 

2

)

∂2 

∂α∂α∗ 
+ c.c.

]

Q(α∗, α)  

(8.39) 

where .κ̄ = κ − 4iγ + i�ω. 

This equation has a non-positive definite diffusion matrix. Furthermore, it does 

not satisfy the potential conditions, hence its steady-state solution is not readily 

obtained. 

The equation for the Wigner function is, 

. 

∂W (α∗, α)  

∂t
=

(

E0 
∂ 

∂α 
+ κ 

∂ 

∂α 
+ 

κ 

2 

∂2 

∂α∗∂α 
− 2iγ 

∂ 

∂α 
− i χ 

1 

2 

∂2 

∂α∗α 
(8.40) 

+2i χ 
∂3 

∂α3 
α∗α2 + c.c.

)

W (α∗, α).  

This equation is not of a Fokker–Planck form since it contains third-order deriva-

tives. Again a steady-state solution is not readily obtainable. It is clear that for this 

problem the use of the complex .P representation is preferable to the other two rep-

resentations. 
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Problems 

8.1 Derive the Fokker–Planck equation for.P(α1, α2, t) for the non-degenerate para-

metric oscillator after adiabatically eliminating the pump mode. Solve for the poten-

tial solution and derive the moments. 

8.2 Derive the evolution equations for the.Q and Wigner functions for the degenerate 

parametric oscillator described by (8.1). 

8.3 Derive the equation of motion for the .Q function for optical bistability. Show 

that with zero detuning and zero driving the solution for an initial coherent state is 

. Q(α, t) = 

∞
∑

q, p=0 

(q!p!)−1(αα∗
0 )

q (α∗α0)
p( f (t))(p+q)/2 exp

[

−|α|2 − |α0|2
(

f (t) + i δ 

1 + i δ

)]

where 

. δ = 
( p − q) 

κ 
, f (t) = exp [−κν − i ν( p − q)] , ν  = 2μt, κ  = 

γ 

2μ 
. 
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9Interaction of Radiation with Atoms 

Abstract 

The preceding chapters have been concerned with the properties of the radiation 

field alone. In this chapter we turn to the interaction between radiation and matter. 

This is of course the domain of quantum electrodynamics, however in quantum 

optics we are usually only concerned with low energy systems of bound electrons 

which simplifies matters considerably. We will use the occupation number rep-

resentation for bound many-electron systems to quantize the electronic degrees 

of freedom, following the approach of Haken (Waves, Photons and Atoms. North 

Holland, Amsterdam, vols. 1 and 2, 1981, [ 1]) and also Cohen-Tannoudji (Pho-

tons and Atoms: Introduction to Quantum Electrodynamics. Wiley-Interscience, 

1997, [ 2]). 

9.1 Quantization of the Many-Electron System 

In the full theory of QED, the interaction between the electromagnetic field and 

charged matter is described by coupling between the vector potential and the Dirac 

spinor field. In quantum optics we only need the low energy (non relativistic) limit 

of this interaction. This is given by the minimal coupling Hamiltonian [ 3] 

.H = 
1 

2m 
(p − eA)2 + eV (x) + Hrad (9.1) 

where . p is the momentum operator for a particle of charge . e moving in a Coulomb 

potential .V (x). The vector potential is quantised in a box of volume .V as 

.A(x, t) =
∑

n,ν

√

�

2ǫ0ωnV 
en,ν

[

ei(kn ·x−ωn t)an,ν + e−i(kn ·x−ωn t)a† n,ν

]

(9.2) 

where .en,ν are two orthonormal polarisation vectors (.ν = 1, 2) which satisfy . kn · 
en,ν = 0, as required for a transverse field, and the frequency is given by the dis-
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persion relation .ωn = c|kn|. The positive and negative frequency Fourier operators, 
respectively .an,ν and .a

† 
n,ν , satisfy 

.[an,ν , a
† 
m,ν ′] =  δnmδνν ′ (9.3) 

The last term, .Hrad is the Hamiltonian of the free radiation field given by 

.Hrad =
∑

k

�ωka
† 
k ak (9.4) 

where we have subsumed polarisation and wave vectors labels into the single sub-

script . k. 

We now use an occupation number representation in the antisymmetric sector 

of the many body Hilbert space for the electronic system based on a set of single 

particle states .|φ j 〉, with position probability amplitudes, .φ j (x), which we take as 

the bound energy eigenstates of the electronic system without radiation. They could 

for example be the stationary states of an atom, the quasi bound states of a single 

Cooper pair on a mesoscopic super-conducting metal island, or the bound exciton 

states of semiconductor quantum dot. We then define the electronic field operators 

. �̂(x) =
∑

j 

c j φ j (x) (9.5) 

where the appropriate commutations relations for the antisymmetric sector are the 

fermionic forms 

.ckc
† 
l + c

† 
l ck = δkl (9.6) 

.ckcl + clck = c
† 
kc

† 
l + c

† 
l c

† 
k = 0 (9.7) 

In the occupation number representation the Hamiltonian may be written as the sum 

of three terms, .H = Hel + HI + Hrad where the electronic part is given by 

.Hel =
∫

d3x �̂†(x)

[

− �
2 

2m 
∇2 + eV (x)

]

�̂(x) =
∑

j 

E j c
† 
j c j (9.8) 

The interaction part may be written as the sum of two terms . HI = HI ,1 + HI ,2 

where 

.HI ,1 =
∫

d3x �̂†(x)
(

− 
e 

2m 
(A(x) · p + p · A(x))

)

�̂(x) (9.9) 

.HI ,2 =
∫

d3x �̂†(x)

(

e2 

2m 
(A(x)2)

)

�̂(x) (9.10) 
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Unless we are dealing with very intense fields for which multi-photon processes are 

important, the second term .HI ,2 may be neglected. The dominant interaction energy 

may then be written as 

.HI = �

∑

k,μ,m 

gk,μ,m (bk + b
† 
k )c

† 
ncm (9.11) 

The interaction coupling constant is 

.gk,n,m = −  
e 

m

(

1 

2ǫ0�ωk V

)1/2 ∫

d3xφ∗
n(x)

(

eik·xp
)

φm (x) (9.12) 

We now proceed by making the dipole approximation. The factor .eik·x varies on a 
spatial scale determined by the dominant wavelength scale, .λ0, of the field state. At 

optical frequencies, .λ0 ≈ 10−6 m. However the atomic wave functions, .φn(x) vary 

on a scale determined by the Bohr radius, .a0 ≈ 10−11 m. Thus we may remove the 

oscillatory exponential from the integral and evaluate it at the position of the atom 

.x = x0. Using the result 

.[p2, x] = −i2�p (9.13) 

we can write the interaction in terms of the atomic dipole moments 

.

∫

d3xφ∗
n(x)

(

eik·xp
)

φm (x) = i 
m 

e 
ωnme

ik·x0
∫

d3xφ∗
n(x)(e · k)φm (x) (9.14) 

where .ωnm = (En − Em )/�. 

In the interaction picture the interaction Hamiltonian becomes explicitly time 

dependent, 

. ĤI (t) = �

∑

k,n,m 

gk,n,m

(

bke
−iωk t + b

† 
ke

iωk t
)

c† ncme
iωnm t (9.15) 

where the tilde indicates that we are in the interaction picture. If the field is in state 

for which the dominant frequency is such that .ω(k0) ≈ ωnm , the field is resonant 

with a particular atomic transition and we may neglect terms rotating at the very 

high frequency .ω(k) + ωnm . This is known as the rotating wave approximation. 

This assumes that the field strength is not too large and further that the state of the 

field does not vary rapidly on a time scale of .ω−1 
nm , i.e. we ignore fields of very fast 

strong pulses. As a special case we assume the field is resonant (or near-resonant) 

with a single pair of levels with .E2 > E1. The interaction picture Hamiltonian in the 

dipole and rotating wave approximation is then given by 

. ĤI = �

∑

k

(

c
† 
1c2b

† 
kgke

−i (ω(k)−ω21)t + h.c.
)

(9.16) 
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where 

.gk = −i (2�ǫ0ω(k)V )−1/2 ωaμ21e
ik·x0 (9.17) 

and 

.μ21 = 〈φn|e · x|φm〉 (9.18) 

with .ωa = ω2 − ω1. 

It is conventional to describe the operator algebra of a two-level system in terms 

of pseudo-spin representation by noting that the Pauli operators may be defined as 

.σz = c
† 
2c2 − c

† 
1c1 (9.19) 

.σx = c
† 
2c1 + c

† 
1c2 (9.20) 

.σy = −i (c
† 
2c1 − c

† 
1c2) (9.21) 

.σ+ = σ
† 
− 

= c
† 
2c1 (9.22) 

The operators .sα = σα/2 (with .α = x, y, z) then obey the .su(2) algebra for a spin 

half system. In terms of these operators we may write the total Hamiltonian for the 

system of field plus atom in the dipole and rotating wave approximation as 

.H =
∑

k

�ω(k)b
† 
kbk +

�ωa 

2 
σz + �

∑

k 

(gkbkσ+ + h.c.) (9.23) 

The free Hamiltonian for the two-level electronic system is 

.Hel =
�ωa 

2 
σz (9.24) 

Denoting the ground and excited states as .|1〉 and .|2〉 respectively, we see that 

.Hel|s〉 =  (−1)s
�ωa 

2 
|s〉 s = 1, 2 (9.25) 

The action of the raising and lowering operators on the energy eigenstates is:. σ+|1〉 =  

|2〉 and .σ−|2〉 = |1〉, while .σ2
± 

= 0. We now relabel the ground state and excited 

state respectively as .|1〉 ≡ |g〉, .|2〉 ≡ |e〉. If the state of the system at time . t is . ρ, the 

probability to find the electronic system in the excited state and ground state are, 

respectively, 

.pe(t) = 〈2|ρ|2〉 = 〈σ+σ−〉 (9.26) 

.pg(t) = 〈1|ρ|1〉 = 〈σ−σ+〉 (9.27) 

The atomic inversion is defined as the difference between these two probabilities and 

is given by 

.pe(t) − pg(t) = 〈σz〉 (9.28) 
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While the atomic coherences are defined by 

.ρ12 ≡ 〈1|ρ|2〉 = 〈σ+〉 (9.29) 

with .ρ21 = ρ∗
12. 

9.1.1 Interaction of a Single Two-Level Atom with a Single Mode 
Field 

If we further restrict the state of the field to include only a single mode, with frequency 

.ω0 (perhaps using a high .Q optical resonator), we arrive at the Jaynes-Cummings 

Hamiltonian, 

.H = �ω0b
†b + �ωa 

2 
σz + �(gbσ+ + g∗b†σ−) (9.30) 

coupling a single harmonic oscillator degree of freedom to a two-level system. The 

coupling constant . g can vary from a few kHz to many MHz. An example is provided 

by the experiment of Aoki et al. [ 5] in which a cesium atom interacts with the 

toroidal whispering gallery mode of a micro-resonator as it falls under the action of 

gravity from a magneto-optical trap. The atomic resonance is at the 6S.1/2; . F = 4 → 

6P3/2; F ′ = 5 transition in cesium. A coupling constant as large as. g/2π = 50 MHz 

was achieved. 

On resonance, .ωa = ωc = ω, we see that the interaction Hamiltonian . HI =
�g(bσ+ + b†σ−) (with . g chosen as real), commutes with the free Hamiltonian, 

.H0 = �(b†b + 
1 
2 
σz), so that the eigenstates of the full Hamiltonian can be written as 

a linear combination of the degenerate eigenstates of .H0. Defining .|n, s〉 = |n〉|s〉, 
where .b†b|n〉 =  n|n〉, the degenerate eigenstates of the free Hamiltonian are .|n, 2〉, 
.|n + 1, 1〉. Within this degenerate subspace, the state at time . t may be written 

.|ψn(t)〉 =  cn,2(t)|n, 2〉 +  cn+1,1(t)|n + 1, 1〉, and the Schrödinger equation in the 
interaction picture is 

.

(

ċn,2 

ċn+1,1

)

= −i�nσx

(

cn,2 

cn+1,1

)

(9.31) 

where .�n = g
√
n + 1. The eigenvalues of this system of linear equations are . ±i�n 

corresponding to the eigenstates of . HI 

.|n, ±〉 = 
1√
2 

(|n, 2〉 ± |n + 1, 1〉) (9.32) 

which are often referred to as the dressed states. The splitting of the degeneracy is 

depicted in Fig. 9.1. 
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Fig. 9.1 The dressed states for the energy eigenstates of the Jaynes–Cummings interaction. On 

the left are show the degenerate states for zero interaction. When the interaction is turned on the 

degeneracies are lifted 

Thus the general solution is 

.cn,2(t) = cn,2(0) cos�n t − icn+1,1(0) sin�n t (9.33) 

.cn+1,1(t) = cn+1,1(0) cos�n t − icn,2(0) sin�n t (9.34) 

If the atom is initially in the excited state and the cavity field has exactly . n photons, 

the probability for finding the atom in the same state at time .t > 0 is 

.pe(t) = |〈n, 2|ψn(t)〉|2 = 
1 

2 
(1 + cos 2�n t) (9.35) 

The excitation oscillates backward and forth between the cavity and the electronic 

system with frequency .�n , the Rabi frequency. Note that for .n = 0 the separation 

of these eigenvalues is .2g, which is known as the vacuum Rabi splitting. If the field 

is in an arbitrary pure state, .|φ〉 =
∑

n fn|n〉 and the atom is initially excited, the 

probability to find the atom in the excited state at time .t > 0 may be written 

.pe(t) = 
1 

2

[

1 + 

∞
∑

n=0 

| fn|2 cos(2g
√
n + 1t)

]

(9.36) 
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This is a discrete superposition of harmonic oscillations with incommensurate 

frequencies. Thus it must exhibit quasiperiodic behaviour. If the initial photon num-

ber distribution .| fn|2 has narrow support on . n, only a few frequencies are involved 
and there is a beating between these different frequencies leading to what are known 

as collapses and revivals. The collapse refers to the decay of oscillations at short 

times due to beating between the incommensurate frequencies. The revival refers to 

partial re-phasing of the oscillations at later times. In the case of the field initially 

in a coherent state, .|α〉, the initial number distribution is Poissonian with standard 

deviation in number given by the root mean, .n̄1/2|α|. An approximate evaluation of 

the sum valid for times such that .gt < n̄1/2 gives [ 6] 

.pe(t) = 
1 

2

[

1 + e
− 

g2 t2 

2(n̄+1) cos(2g
√
n̄ + 1t)

]

(9.37) 

There is an average Rabi oscillation frequency under a Gaussian envelope. The 

characteristic time for the collapse of the oscillation is thus 

.tcol ∼ 
1 

g 
(9.38) 

A more accurate evaluation using the Laplace summation formulae shows that 

the oscillations first revival at a time 

.trev ∼ 
2π ̄n1/2 

g 
(9.39) 

Thus a quasi periodic burst of Rabi oscillations occurs every . n̄ Rabi periods. The 

collapse and revival has been seen experimentally using an atom excited to a Rydberg 

ground state interacting with the microwave field in a superconducting cavity [ 6]. 

The results of the experiment are shown in Fig. 9.2. 

9.1.2 Spontaneous Emission from a Two-Level Atom 

Spontaneous emission can also be treated using a master equation. In this case the 

system is a two-level electronic system, with ground state .|g〉 of energy .�ω1 and 

excited state.|e〉with energy.�ω2, representing an electric dipole transition, coupled to 

the many modes of the radiation field in the dipole and rotating wave approximation. 

The master equation is 

. 

dρ 

dt  
= −  

i

�
[H , ρ] +  γ( ̄n + 1)D[σ−]ρ + γ ̄nD[σ+]ρ (9.40) 

where. n̄ is the thermal occupation of the radiation field mode at the atomic resonance 

frequency .ωa = ω2 − ω1. We have neglected a small term which gives rise to a shift 

in the atomic transition frequency and which contributes to the Lamb shift. At optical 
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Fig.9.2 a The experimental observation of collapse and revival of the oscillations in the occupation 

of the excited state of a two-level atom interacting with a microwave field initially in a coherent 

state with mean photon number .n̄ = 0.85. In  b is the Fourier transform of the oscillations with the 

Rabi frequencies .�n , .n = 0, 1, 2, 3 marked (from [ 7]) 

frequencies, .n̄ ≈ 0. In the case of a free two-level atom, .H = �ωa 

2 
σz , the probability 

to find the atom in the excited state, .pe(t) = 〈e|ρ|e〉 satisfies the equation 

. 

dpe 

dt  
= −γ pe(t) (9.41) 

with the solution .pe(t) = pe(0)e
−γt , which describes spontaneous emission. The 

dipole polarisation is proportional to the atomic coherence, .〈e|ρ|g〉 = 〈σ−〉 which 
obeys 

. 

d〈σ−〉
dt  

= −
(

iωa + 
γ 

2

)

〈σ−〉 (9.42) 
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with the solution 

.〈σ−(t)〉 = 〈σ−(0)〉e−(γ/2+iωa )t (9.43) 

The dipole oscillates at the transition frequency and decays, as it radiates. 

The radiated field is related to the input field and the local source through an 

input/output relation in analogy with the case of a cavity discussed above. The positive 

frequency components of the field operator takes the form 

.E (+) (x, t) = E
(+) 
i (x, t) − 

ω2 
a 

4πǫ0c2r

(

µ × 
x 

r

)

× 
x 

r 
σ−(t − r/c) (9.44) 

where.r = |x| is the distance from the source to the point. x and. µ is the atomic dipole 

moment. 

9.1.3 Phase Decay in a Two-Level System 

Spontaneous emission is not the only irreversible process involved in the absorption 

and emission of light. In an atomic vapour, atomic collisions are also a source of 

decoherence and cause a decay of the atomic polarisation, .σx + iσy , without chang-

ing the decay of the inversion, . σz . We can model this process by a coupling between 

the inversion and a high temperature heat bath, 

.Hcol = σzŴc(t) (9.45) 

where.Ŵc(t) is a bath operator describing the collisions. This Hamiltonian commutes 

with .σz and thus does not contribute to the decay of the inversion. It appears like a 

fluctuating detuning in the Bloch equations and thus will affect the atomic polari-

sation. The corresponding master equation, in the interaction picture and including 

spontaneous emission, is 

. 

dρ 

dt  
= 

γ 

2 
(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−) − γp[σz, [σz, ρ]] (9.46) 

The Bloch equations now become 

. 

d〈σz〉
dt

= −γ(〈σz〉 +  1) (9.47) 

. 

d〈σx 〉
dt

= −
(γ 

2 
+ γp

)

〈σx 〉 (9.48) 

. 

d〈σy〉
dt

= −
(γ 

2 
+ γp

)

〈σy〉 (9.49) 

In the presence of collisions the decay time for the polarisation, .T2 = (γ/2 + γp)
−1, 

is no longer given by twice the decay time for the inversion, .T1 = γ−1, but rather 

.T2 < 2T1. 
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9.2 Resonance Fluorescence 

If the atom is driven by a classical radiation field, the Hamiltonian is given by (9.30) 

and replace . b → β 

.H = �ω0 

2 
σz + �(σ+e

−iωL t + σ−e
iωL t ) (9.50) 

where .� = gβ is the Rabi frequency and .ωL is the carrier frequency of the driving 

field. The master equation in an interaction picture at the frequency .ωL is 

. 

dρ 

dt  
= −i

�

2 
[σz, ρ] −  i�[σ+ + σ−, ρ] +  γD[σ−]ρ (9.51) 

where the detuning is .� = ωa − ωL . The resulting Bloch equations for the atomic 

moments are linear 

. 

d〈σ−〉
dt  

= −
(γ 

2 
+ i�

)

〈σ−〉 +  i�〈σz〉 (9.52) 

. 

d〈σz〉
dt

= −γ(〈σz〉 +  1) − 2i�(〈σ+〉 − 〈σ−〉) (9.53) 

These inhomogeneous equations can be written as homogeneous equations as 

. 

d 

dt  
(〈σ(t)〉 − 〈σ〉ss  ) = A((〈σ(t)〉 − 〈σ〉ss  )) (9.54) 

The steady state solution is 

.〈σx 〉ss  =
4��

γ2 + 4�2 + 8�2
(9.55) 

.〈σy〉ss  =
2γ�

γ2 + 4�2 + 8�2
(9.56) 

.〈σz〉ss  = −  
γ2 + 4�2 

γ2 + 4�2 + 8�2
(9.57) 

The solutions for resonance (.� = 0), with the atom initially in the ground state, 

are [ 8] 

.〈σz(t)〉 =  
1 

1 + Y 2

[

1 + Y 2e−3γt/4

(

cosh δt + 
3γ 

4δ 
sinh δt

)]

(9.58) 

.〈σ±(t)〉 =  ±i 
1√
2 

Y 

1 + Y 2

[

1 − Y 2e−3γt/4

(

cosh δt + 
3γ 

4δ 
sinh δt

)]

(9.59) 

. ±i
√
2Ye−3γt/4

( γ 

4δ

)

sinh(δt) . (9.60) 
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where 

.Y = 
2
√
2�

γ 
(9.61) 

and 

.δ = 
1 

2

√

γ2 

4 
− 16�2 (9.62) 

bear in mind that this is in the interaction picture. Transforming back to the 

Schrödinger picture we meed to multiply the solution for .〈σ±(t)〉 by .e−iωt . 

Clearly there is a threshold at .� = γ/8 below which the solutions monotonically 

approach the steady state and above which they are oscillating. A similar threshold 

occurs in the solutions for the two-time correlation function .〈σ+(t)σ−(t + τ )〉t→∞, 

which determines the spectrum of the scattered light. The stationary spectrum, as 

measured by a monochromatic detector at the point . x is defined by [ 9]. 

.S(x, ω) = lim 
t→∞ 

1 

2π

∫ ∞ 

−∞
〈E (−) (x, t)E (+) (x, t + τ )〉dτ , (9.63) 

the Fourier transform of the stationary two-time correlation function 

.〈E (−) (t)E (+) (t + τ )〉 which using (9.44) is given  by  

.S(x, ω) = 
I0(x) 

2π

∫ ∞ 

−∞ 

dτ e−iωτ G(τ ) (9.64) 

where 

.I0(x) =
∣

∣

∣

∣

∣

ω2 
0 

4πǫ0c2r

(

µ × 
x 

r

)

× 
x 

r

∣

∣

∣

∣

∣

2 

(9.65) 

and 

.G(τ ) = lim 
t→∞

〈σ+(t)σ−(t + τ )〉 ≡ 〈σ+(t)σ−(τ )〉ss (9.66) 

with 

.〈σ+(t)σ−(t + τ )〉 =  tr
[

σ−e
Lτ [ρ(t)σ+]

]

(9.67) 

and 

.〈σ+(t)σ−(τ )〉ss  = tr
[

σ−e
Lτ [ρssσ+]

]

(9.68) 

Here .eLτ [A] is the solution to the master equation starting with the initial condition 

.ρ(0) = A. 

The equation of motion for .G(τ ) couples in many other moments. If we define 

the correlation matrix 

.G(τ ) = 

⎛ 

⎝

〈σ+σ+(τ )〉ss 〈σ−σ+(τ )〉ss 〈σzσ+(τ )〉ss
〈σ+σ−(τ )〉ss 〈σ−σ−(τ )〉ss 〈σzσ−(τ )〉ss
〈σ+σz(τ )〉ss 〈σ−σz(τ )〉ss 〈σzσz(τ )〉ss  

⎞ 

⎠ (9.69) 
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It is easy to verify that.G(τ ) as a function of. τ obeys the same equations of motion 

as .〈σ(τ )〉 − 〈σ〉ss , 

. 

dG(τ ) 

dτ 
= AG(τ ) (9.70) 

This is the quantum regression theorem. The initial conditions are simplified due to 

the algebra of the Pauli matrices, for example .σ+σ− = (σz + 1)/2 and .σ2
± 

= 0, and 

may thus be written in terms of the stationary solutions in (9.55–9.57). On resonance 

we find that in the interaction picture at .�a , 

.G(τ ) = 
1 

4 

Y 2 

1 + Y 2 
e−γτ /2 (9.71) 

. − 
1 

8 

Y 2 

(1 + Y 2)2

[

1 − Y 2 + (1 − 5Y 2) 
γ 

4δ

]

e−(3γ/4−δ)τ (9.72) 

. + 
1 

8 

Y 2 

(1 + Y 2)2

[

1 − Y 2 − (1 − 5Y 2) 
γ 

4δ

]

e−(3γ/4+δ)τ (9.73) 

where . Y and . δ are given in (9.61, 9.62). 

The corresponding spectrum has a single Lorentzian peak for weak driving fields, 

.4�2 ≪ γ2/16, In the Schrödinger picture the peak is at .ω = ωa , so this is elastic 

scattering. For very strong driving fields, .� ≫ γ we find that the spectrum acquires 

three Lorentzian peaks at .ω = ωa and .ω = ωa ± 2�. This is the inelastic scattering 

limit and the three peak structure is know as the Mollow triplet [ 10]. Note that the 

weight of the central peak is twice as large as the side peaks. 

The light scattered by a two-level atom also exhibits photon anti-bunching. Con-

sider the conditional probability that given a photon is counted at time . t another 

photon will be counted a time . τ later. This is proportional to the second-order cor-

relation function 

.G(2) (t, τ ) = 〈a†(t)a†(t + τ )a(t + τ )a(t)〉 (9.74) 

Usually we are interested in a stationary source so we let .t → ∞  and we normalize 

this by the intensity squared to define 

.g(2) (τ ) = lim 
t→∞ 

G(2) (t, τ )

〈a†(t)a(t)〉2 (9.75) 

Using the result in (9.44) we can express this directly in terms of correlation func-

tions for the atomic polarization. As the equations of motion for the atomic variables 

are linear, the stationary correlation function .〈σ+(t)σ−(t + τ )〉t→∞ is given by the 

quantum regression theorem. We then find that 

.g(2) (τ ) = 1 − e−3γτ /4

(

cosh δτ + 
3γ 

4δ 
sinh δτ

)

(9.76) 
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Fig. 9.3 The second order 

correlation function of the 

fluorescent light, given by 

(10.74) versus delay time . τ . 

The solid line corresponds to 

.� = 2.5, while the dashed 

line corresponds to 

.� = 0.25. In both cases 

. γ = 1.0 

The result .g(2) (τ = 0) = 0 indicates photon anti-bunching, as the probability to 

count a second photon, immediately after a first one has been counted, vanishes. 

This is a direct result of the emission process of the source. Photons are emitted 

when an excited atom relaxes back to the ground state. If a photon is counted, the 

atom is likely to be in the ground state and thus a finite time must elapse before it is 

re-excited and capable of emitting another one. The probability to find the atom in 

the excited state at time . τ given that it starts in the ground state at .τ = 0 is 

.Pe(τ ) = 4�2 

γ2 + 8�2

[

1 − e−3γτ /4

(

cosh δτ + 
3γ 

4δ 
sinh δτ

)]

(9.77) 

Comparison with Fig. 9.3 indicates this interpretation is correct. This prediction, 

first made by Carmichael and Walls [ 11], was one of the earliest examples of how 

quantum optics would differ from a semiclassical description of light. In Fig. 9.3 we 

plot .g(2) (τ ) for two values of the Rabi frequency. 

The first observation of photon anti-bunching was made by Kimble et al. in 1977 

on atomic beams [ 12]. They saw a positive slope for .g(2) (τ ) which is consistent with 

the predictions of the theory, however fluctuations from atomic numbers in the beam 

made a detailed comparison with the single atom result impossible. Ion traps (see 

Chap. 12) provided a means to observe photon antibunching from a single atom. 

In Fig. 9.4 we show the results of a measurement of the second order correlation 

function performed on a single trapped mercury ion [ 14]. 

9.3 Cavity QED 

We will now consider the case of a two-level atom interacting with the radiation 

field in an optical cavity. The study of this system is often known as cavity quantum 

electrodynamics (cavity QED). We are typically interested in the strong coupling 

regime in which the single photon Rabi frequency, . g (the coupling constant in the 

Jaynes–Cummings model) is lager than both the spontaneous decay rate, . γ, of the  

two-level emitter and the rate, . κ , at which photons are lost from the cavity. 

The primary difficulty we face in cavity QED is finding a way to localise a single 

two-level atom in the cavity mode for long time intervals. One approach, pioneered 
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Fig. 9.4 The second order correlation function of the fluorescent light from a single mercury ion in 

a trap versus delay, . τ . a .� = −2.3γ, .� = 2.8γ. b .� = −1.1γ, .� = γ. c .� = −0.5γ, . � = 0.6γ 

(from [ 14]) 

by Kimble [ 15], is to first trap and cool two-level atoms in a magneto-optical trap 

(MOT) and then let them fall into a high finesse cavity placed directly below the 

MOT. If the geometry is correctly arranged then at most one atom will slowly fall 

through the cavity at a time. 

The group of Haroche pioneered an approach using Rydberg atoms passing trans-

versely through a microwave cavity [ 16]. The success of this approach resulted 

in Haroche being a joint recipient of the Nobel prize in physics in 2012. Other 

approaches use constraining forces to trap a single atom in the optical cavity. This 

can be done using the light shift forces of a far off resonant laser field on a two-level 

atom [ 17,18], or it can be done using an ion trap scheme (see Chap. 12). 

Consider the scheme in Fig. 9.5. The interaction Hamiltonian between a single 

two-level atom at the point . x in a Fabry-Perot cavity is given by 

.HI = g(x)a†σ− + g∗(x)aσ+ (9.78) 

where 

.g(x) =
(

μ2ωc 

2�ǫ0V

)1/2 

U (x) ≡ g0U (x) (9.79) 

This is obtained from (9.17) with the traveling wave mode function replaced by 

a cavity standing wave mode function, .U (x). Here . μ is the dipole moment for the 

two-level system and. V is the cavity mode volume defined by.V =
∫

sin[U (x)]2d3x . 
Let us consider the interaction between a single cavity mode and a two-level sys-

tem. For the present we neglect the spatial dependance of .g(x). The master equation, 
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Fig. 9.5 A cavity QED scheme: a single two-level dipole emitter is fixed at a particular location 

inside a Fabry-Perot cavity. The dipole is strongly coupled to a single cavity mode, . a, but can emit 

photons at rate . γ into external modes. Photons are emitted from the end mirror of the cavity at rate 

. κ 

in the interaction picture, for a single two-level atom interacting with a single cavity 

mode, at optical frequencies, is 

. 

dp  

dt  
= −  iδ[a†a, ρ] −  i

�

2 
[σz, ρ] −  i[ǫ∗a + ǫa†, ρ] −  ig[aσ+ + a†σ−, ρ] 

+ 
κ 

2 
(2aρa† − a†aρ − ρa†a) + 

γ 

2 
(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−) (9.80) 

where. ǫ represents a classical coherent laser field driving the cavity mode at frequency 

.ωL , the detuning between the cavity field and the driving field is .δ = ωc − ωL , and 

.� = ωa − ωL is the detuning between the two-level system and the driving field. 

From this equation we can derive equations for first order field/atom moments; 

. 

d〈a〉
dt  

= −
(κ 

2 
+ iδ

)

〈a〉 −  iǫ − ig〈σ−〉 (9.81) 

. 

d〈σ−〉
dt  

= −
(γ 

2 
+ i�

)

〈σ−〉 +  ig〈aσz〉 (9.82) 

. 

d〈σz〉
dt  

= −γ 

2 
(〈σz〉 +  1) − ig

(

〈aσ+〉 − 〈a†σ−〉
)

(9.83) 

Looking at these equations we see that we do not get a closed set of equations for 

the first order moments, for example the equation for .〈σ−〉 is coupled to .〈aσz〉. A  

number of procedures have been developed to deal with this. If there are many atoms 

interacting with a single mode field, an expansion in the inverse atomic number can 

be undertaken and we will describe this approach below. However a good idea of the 

behaviour expected can be obtained simply by factorising all higher order moments. 

This of course neglects quantum correlations and is thus not expected to be able to 

give correct expressions for, say, the noise power spectrum of light emitted from 
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the cavity. Nonetheless it is often a good place to start as it captures the underlying 

dynamical structure of the problem. We thus define the semiclassical equations as 

.α̇ = −  
κ̃ 

2 
α − iǫ − igν (9.84) 

.ν̇ = −  
γ̃ 

2 
ν + igαz (9.85) 

.ż = ig
(

α∗ν − αν∗) − 
γ 

2 
(z + 1) (9.86) 

where the dot signifies differentiation with respect to time and 

.κ̃ = κ + 2iδ (9.87) 

.γ̃ = γ + 2i� (9.88) 

The first thing to consider is the steady state solutions, .αs , zs , νs which are given 

implicitly by 

.zs = −
[

1 + n 

n0
(

1 + �2 
1

)

]−1 

(9.89) 

.αs = −2iǫ

κ̃ 

⎡ 

⎣1 + 
2C (1 + iφ)−1 (1 + i�1)

−1 

1 + n 

n0
(

1+�2 
1

)

⎤ 

⎦ 

−1 

(9.90) 

.νs = 
2ig  

γ̃ 
αszs (9.91) 

where 

.n = |αs |2 (9.92) 

is the steady state intra-cavity intensity and 

.φ = 
2δ 

κ 
(9.93) 

.�1 = 
2�

γ 
(9.94) 

.n0 =
γ2 

8g2
(9.95) 

.C = 
2g2 

κγ 
(9.96) 

The parameter .n0 sets the scale for the intracavity intensity to saturate the atomic 

inversion and is known as the critical photon number. The parameter . C is sometimes 

defined in terms of the critical atomic number, .N0, as .C = N −1 
0 . 
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Fig. 9.6 The intracavity intensity versus the driving intensity, as given implicitly by (9.99), for 

various values of the detuning between the atom and the driving field. In all cases we assume the 

driving is on resonance with the cavity so that .φ = 0 and .C = 9. a .�1 = 0, b .�1 = 2, c . �1 = 3 

We can now determine how the steady state intracavity intensity depends on the 

driving intensity. We first define the scaled driving intensity and intra-cavity intensity 

by 

.Id = 
4ǫ2 

κ2n0 
(9.97) 

.Ic = 
n 

n0 
(9.98) 

The driving intensity and the intracavity intensity are then related by 

.Id = Ic 

⎡ 

⎣

(

1 + 2C 

1 + �2 
1 + Ic

)2 

+
(

φ − 2C�1 

1 + �2 
1 + Ic

)2 
⎤ 

⎦ (9.99) 

The phase .θs of the steady state cavity field is shifted from the phase of the driving 

field (here taken as real) where 

. tan θs = 
φ − 2�1C/

(

1 + �2 
1 + Ic

)

1 + 2C/
(

1 + �2 
1 + Ic

) (9.100) 

Equation (9.99) is known as the bistability state equation, a name that makes sense 

when we plot the intracavity intensity versus the driving intensity, see Fig. 9.6. It  

can be shown that the steady state corresponding to those parts of the curve with 

negative slope are unstable. Clearly there are regions for which two stable steady 

states coexist for a given driving intensity. 

Cavity QED requires that we are in the strong coupling limit in which .g0 > γ, κ. 

Furthermore a necessary condition for strong coupling is that .(n0, N0) ≪ 1. In this 

limit a single photon in the cavity can lead to significant dynamics. One way to 

make .g0 large is to use a very small mode volume .V and a large dipole moment. 

Thompson et al. [ 20] trapped a single rubidium atom in a photonic crystal waveguide 

cavity. They achieved a Rabi frequency of several gigahertz. Typical parameters 
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are .2g = 2π × 0.6 Ghz, .κ = 2π × 840 GHz and .γ = 2π × 0.006 GHz. If the Rabi 

frequency begins to approach the atomic frequency we enter what is called the ultra-

strong coupling regime wherein the rotating wave approximation begins to fail and 

the Jaynes-Cummings model breaks down [ 21]. 

9.3.1 Vacuum Rabi Splitting 

With the ability to trap a single atom in the cavity and cool it to very low kinetic 

energies, it becomes possible to measure the vacuum Rabi splitting. This is the 

splitting energy, induced by the interaction in (9.30), of the degenerate states 

.|n = 0〉|e〉, |n = 1〉|g〉 where .a†a|n〉 =  n|n〉 is a photon number eigenstate for the 

intracavity field. As we saw in Sect. 9.1.1 these states are split in energy by .2g. If . g 

is large enough an excited atom is likely to emit a single photon into the cavity mode 

and periodically reabsorb and remit before the excitation is lost. 

Boca et al. [ 19] observed the vacuum Rabi splitting using a single Cs atom trapped 

inside an optical Fabry-Perot cavity using a far off-resonance optical dipole trap. An 

important breakthrough that enabled this experiment was the ability to cool the atom 

using a Raman cooling scheme for motion of the atom along the cavity axis. The 

inferred uncertainties in the axial and transverse position of the atom in the trap 

were .�zax ≈ 33 nm and .�ztrans  ≈ 5.5 µm. The two electronic levels used were 

the .6S1/2, F = 4 → 6P3/2, F
′ = 5 transition of the .D2 with a maximum single 

photon Rabi frequency of .2g0/2π = 68 MHz. The transverse atomic decay rate is 

.γ/2π = 1.3 MHz and the cavity decay rate is .κ/2π = 2.05 MHz. Clearly this is in 

the strong coupling regime. 

A weak probe laser beam is incident on the cavity with a frequency .ωp that can 

be tuned through the atomic resonance frequency. The transmitted light is detected 

at a photodetector and thus the transmission coefficient can be measured. The results 

for six cases in which one atom was present in the cavity are shown in Fig. 9.7. Also 

shown as a solid line is the theoretical prediction based on the steady state solution to 

the master equation. The asymmetry of the peaks is due to the different Stark shifts 

for the Zeeman sub-levels of the excited state and optical pumping. 

Problems 

9.1 In the Jaynes-Cummings model, show that if the atom begins in the ground state 

and the field begins in the state, .|φ〉 =
∑

n fn|n〉, the probability to find the atom in 

the excited state at time .t > 0 is given by 

.pe(t) = 

∞
∑

n=1 

| fn|2 sin2(�n−1t) (9.101) 
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Fig.9.7 The results of a measurement of the vacuum Rabi splitting performed by the Caltech group. 

Transmission spectrum for six randomly drawn atoms. Six different studies are shown, together with 

a comparison to theory (solid line). The error bars reflect the statistical uncertainties in the number 

of photocounts. From [ 19] 

9.2 In the Jaynes–Cummings model, show that if the atom begins in the ground 

state and the field starts in an arbitrary state, .|φ〉 =
∑

n fn|n〉, the state at time . t > 0 

is the entangled state 

.|�(t)〉 = |φg(t)〉|g〉 + |φe(t)〉|e〉 (9.102) 

where 

. |φg(t)〉 =
∑

n 

fn cos(�n−1t) , |φe(t)〉 =
∑

n 

fn sin(�n−1t) |φe(t)〉

In the case of the field initially in a coherent state, plot the Q-functions for 

.|φg(t)〉, |φe(t)〉 at times equal to half way to the first revival and at the first revival. 

9.3 In the Jaynes-Cummings model suppose we prepare the two-level system in the 

state .|g〉 and that the interaction with the field mode proceeds for a time . τ at which 

point we make an arbitrarily accurate measurement of the atomic state. The resulting 

conditional (un-normalized) state for the field mode is .|ψ̃(x)〉 =  E(x)|ψ(0)〉a where 
.x = g, e and .E(x) = 〈x |e−iθ(aσ++a†σ−)|g〉. Show that 

.E(g) = cos(θ
√

aa†) , E(e) = −ia†(aa†)−1/2 sin(θ
√

aa†) . (9.103) 
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If the field starts in a coherent state .|α〉 show that the conditional states can approx-
imate cat-states. 

9.4 A two-level atom driven by a thermal radiation field satisfies the master equation 

(9.40). Show that the steady state of the atom is a thermal state with steady state 

probabilities satisfying 

. 

pe 

pg 
= e−�ωa /kB T (9.104) 

9.5 A two-level atom resonantly coupled to a cavity field via the Jaynes-Cummings 

interaction, at zero temperature, is described by the master equation 

. 

dp  

dt  
= −  i[ǫ∗a + ǫa†, ρ] −  ig[aσ+ + a†σ−, ρ] 

+ 
κ 

2 
(2aρa† − a†aρ − ρa†a) + 

γ 

2 
(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−) (9.105) 

Show that, in the limit that the cavity damping rate is much greater than the sponta-

neous emission rate, the effective master equation for the atom is 

. 

dρ 

dt  
= −ig[α0σ+ + α∗

0σ−, ρ] + Ŵ

2 
(2σ−ρσ+ − σ+σ−ρ − ρσ

† 
+σ−) (9.106) 

where .α = −2iǫ/κ and .Ŵ = γ + 4g2/κ. 
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10Quantum Theory of the Laser 

Abstract 

The quantum theory of the laser was developed in the 1960s principally by the 

groups associated with H. Haken, W.E. Lamb and M. Lax. Haken and Lax indepen-

dently developed sophisticated techniques to convert operator master equations 

into c-number Fokker–Planck equations or equivalent Langevin equations. In this 

chapter we shall follow the approach of Scully and Lamb to compute photon 

statistics and the linewidth of the laser. In the Scully–Lamb treatment the pump-

ing is modelled by the injection of a sequence of inverted atoms into the laser 

cavity. In a usual laser, with a thermal pumping mechanism, a Poisson distributed 

sequence of inverted atoms is assumed. Introduction of a Bernoulli distribution 

enables a more general class of pumping mechanisms to be considered, including 

the case of the regularly pumped laser. 

10.1 Master Equation 

A single mode cavity field is excited by a sequence of atoms injected into the cavity. 

Let . ti be the arrival time of the atom . i in the cavity and . τ the time spent by each atom 

in the cavity. The change in the density operator for the field due to the interaction 

with the . i th atom may be represented by 

.ρ(ti + τ)  = P(τ )ρ(ti ). (10.1) 

The explicit form of .P(τ ) depends on the particular atomic system used in the 

excitation process. The model we will employ is indicated in Fig. 10.1. 

Of the four levels, only levels.|1〉 and.|2〉 are coupled to the intracavity field, which 
thus are referred to as the lasing levels. Each of these levels may then decay. Level 

.|1〉 decays to level .|3〉 at a rate .γ1 while level .|2〉 decays to level .|4〉 at a rate . γ2. 

We will assume that these decay rates are very much greater than the spontaneous 

decay rate of level .|2〉 to level .|1〉, and thus we neglect spontaneous emission in the 

lasing levels. Each atom is prepared in the excited state .|2〉 prior to interaction with 
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Fig. 10.1 Schematic 

representation of the 

four-level atomic model of a 

laser. Only levels 1 and 2 are 

coupled to the laser field 

the cavity field. In the usual laser system the lifetimes .γ 
−1 
1 and .γ 

−1 
2 are much shorter 

than the time . τ spent by each atom in the cavity. This means that each atom rapidly 

attains a steady state in passing through the cavity and the pump operation .P(τ ) is 

effectively independent of the time . τ . The effect of a single atom on the state of the 

field may then be written as 

.ρ′ = Pρ, (10.2) 

where we have dropped the time dependence in . ρ for simplicity, the prime serving 

to indicate the state of the field after the passage of a single atom through the cavity. 

We may represent the initial state of the field quite generally as 

.ρ = 

∞
∑

n,m=0 

ρn,m (0)|n〉〈m|. (10.3) 

In Appendix A.10, we solve the master equation for the system over the time. τ under 

the assumptions discussed above. The result is 

.ρ′ = 

∞
∑

n,m=0 

ρn,m (0) ( Anm |n〉〈m| +  Bnm |n + 1〉〈m + 1|) , (10.4) 

where the explicit expressions for .Anm , .Bnm are given in the appendix. 

We now assume that each atom contributes independently to the field. (This 

assumption remains valid even if there is more than one atom in the cavity at any 

time, provided that they are sufficiently dilute.) Thus, if . k atoms are passed through 

the cavity from time 0 to time . t the field density operator at time . t is given by 

.ρ(t) = P
k ρ(0). (10.5) 

More generally, however, not all atoms entering the cavity are prepared in the 

excited state. Let the probability for an excited atom to enter the cavity between 

. t and .t + �t be .r�t , . r being the average injection rate. This defines a Poisson 
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excitation process. Thus the field at time .t + �t is made up of a mixture of states 

corresponding to atomic excitation and no atomic excitation, thus 

.ρ(t + �t) = r�tPρ(t) + (1 − r�t)ρ(t). (10.6) 

In the limit .�t → 0 we have 

. 

dρ(t) 

dt
= rUρ(t) (10.7) 

where 

.U = P − 1. (10.8) 

We must now include the decay of the cavity field through the end mirrors. This 

is modelled in the usual way by coupling the field to a zero temperature heat bath. 

Thus the total master equation for the field density operator is 

. 

dρ 

dt  
= rUρ + 

κ 

2 
(2aρa† − a†aρ − ρa†a), (10.9) 

where . κ is the cavity decay rate. This is the Scully–Lamb laser master equation [ 3]. 

In the special case that.γ1 = γ2 = γ the matrix elements of.U in the number basis 

are greatly simplified. In this case the master equation in the number basis may be 

written as 

. 

dρnm 

dt
=G

( √
nm 

1 + (n + m)/2ns 
ρn−1,m−1 (10.10) 

−
(m + n + 2)/2 + (m − n)2/8ns 

1 + (n + m + 2)/2ns 
ρnm

)

+ 
κ 

2 
[2

√

(n + 1)(m + 1)ρn+1,m+1 − (n + m)ρnm], 

where 

.G = 
r 

2ns 
(10.11) 

and 

.ns = 
γ 
2 

4g2 
. (10.12) 

where . g is the coupling strength between the cavity and the levels 1 and 2. We have 

neglected terms .∝ n−2 
s in the denominators of the first two coefficients. 

The master equation (10.10) can be written in the form [ 4] 

. ρ̇ = GnsD[a†]
(

A[a†] +  ns
)−1 

ρ + κD[a]ρ (10.13) 
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where the super-operators are defined by 

.D[B]ρ = Bρ B† − 
1 

2 
( A† Aρ + ρ A† A) (10.14) 

.A[B]ρ = 
1 

2 
(B† Bρ + ρ B† B) (10.15) 

and .G is the small signal gain, .ns is the saturation photon number and . κ is the cavity 

decay rate. The inverse superoperator can be represented as 

.

(

A[a†] +  ns
)−1 =

∫ ∞ 

0 

dβe−β(aa†+ns )/2ρe−β(aa†+ns )/2 (10.16) 

which describes the incoherent pumping process that leads to saturation of the ampli-

fication. The first term in (10.13) represents gain, that is to say, the injection of energy 

into the cavity field, while the second term represents photon loss through the cavity 

mirrors. We have also assumed operation at optical frequencies to ignore thermal 

photons entering the cavity. Any noise necessarily arises from quantum fluctuations 

not thermal fluctuations. 

The photon number distribution obeys the equation 

. 

dpn 

dt  
= −G

(

n + 1 

1 + (n + 1)/ns 
pn −

n 

1 + (n/ns ) 
pn−1

)

+ κ(n + 1)pn+1 − κnpn . 

(10.17) 

If we expand the denominators in (10.17) to first-order an approximate equation 

for the mean photon number may be obtained, namely 

. 

d n̄ 

dt  
= (G − κ)  ̄n − 

G 

ns 
(n̄2 + 2n̄ + 1) + G. (10.18) 

If .G > κ  there will be an initial exponential increase in the mean photon number. 

Thus .G = κ is the threshold condition for the laser. 

The steady state photon number distribution may be deduced directly from 

(10.17), using the condition of detailed balance. It may be written in the form 

.Pss  
n = N 

(Gns /κ)n+ns 

(n + ns )! 
, (10.19) 

where .N is a normalisation constant. Below threshold (.G < κ) this distribution may 

be approximated by a chaotic (thermal) distribution with the mean . n̄ = G/(κ − G) 

(Exercise 10.1). Above threshold (.G > κ) the mean and variance are given, to a good 

approximation, by (Exercise 10.2), 
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Fig. 10.2 The steady state photon number distribution of a laser operating above and below thresh-

old. In a .G/κ = 5.0, in  b .G/κ = 0.25. In both cases . ns = 2 

.n̄ = ns

(

G 

κ 
− 1

)

, (10.20) 

.V (n) = n̄ + ns . (10.21) 

Well above threshold .n̄ ≫ ns and thus .V (n) ≈ n̄, indicating an approach to Poisson 

statistics. We can write the steady state density operator as 

.ρss  = 

∞
∑

n=0 

n̄n 

n! 
e−n̄|n〉〈n| =

∫ 2π 

0 

dφ 

2π 
|
√
n̄ei φ〉〈

√
n̄eiφ | (10.22) 

In Fig. 10.2 we show the exact photon number distribution for below and above 

threshold. The transition from power law to the Poisson distribution is quite evident. 

Photon counting experiments by Arecchi [ 6], Johnson et al. [ 7], and Morgan and 

Mandel [ 10], demonstrated that the photon statistics of a laser well above threshold, 

approaches a Poisson distribution. In Fig. 10.3 we present the results of photon 

counting measurements by Arecchi on both thermal and laser light. A comparison 

of the experimental data with the thermal and Poisson distributions is also shown. 
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Fig. 10.3 Experimental results for the steady state photon number distribution for a thermal (i.e., 

Gaussian) light source and a laser operator above threshold. The laser exhibits Poissonian photon 

number statistics [ 5] 

10.1.1 Laser Linewidth 

First we will consider an equivalent classical model. This can be found by computing 

the dynamics of the average field .α(t) = tr(aρ(t)). Substituting this into the mas-

ter equation and factorising moments (equivalent to neglecting quantum noise) the 

semiclassical dynamics (in the lab frame) is given by 

.α̇ = −iωα − 
κα 

2

(

1 −
Gns 

κ(|α|2 + ns )

)

(10.23) 

Well above threshold this is similar to the van der Pol oscillator in a rotating frame. 

There are two fixed points .α0 = 0 and .|α0|2 = (G − 1)ns /κ ≡ μ. The second solu-

tion is the above threshold limit-cycle solution with a frequency of . ω. 

In oder to include the quantum noise we can convert the interaction picture master 

equation to an equivalent Fokker-Planck equation in the P representation [ 8] from 

which we can deduce the Ito stochastic differential equations (in the interaction 

picture). The Fokker-Planck equation is 

. 

∂ P 

∂t 
= 

1 

2 

∂ 

∂α

[

κα

(

1 −
G/κ 

1 + |α|2/ns

)

+ c.c

]

P + G 
∂2 

∂α∂α∗ 
P (10.24) 

.α̇ = −  
κα 

2

(

1 −
Gns 

κ(|α|2 + ns )

)

+ Ŵ(t) (10.25) 
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where the Weiner noise term is 

.dŴ(t)2 = dŴ∗(t)2 = 0 (10.26) 

.dŴ(t)dŴ∗(t) = Gdt (10.27) 

and .N is the number of atoms. 

Define .α = rei φ . Using the Ito rules we then find that these obey the stochastic 

differential equations 

.dr = −  
κr 

2

(

1 −
Gns 

κ(r2 + ns ) 
+ 

G 

4r

)

dt  + dŴr (t) (10.28) 

.dφ = 
1 

r 
dŴφ(t) (10.29) 

where 

.dŴr (t)
2 = dŴφ(t)2 = 

G 

2 
dt (10.30) 

.dŴr (t)dŴφ(t) = 0 (10.31) 

Note that the noise in the phase variable is inversely proportional to the size of the 

limit cycle. This is typical of how noise enters limit cycles [ 9]. We can linearise the 

phase noise by evaluating it on the limit cycle .r2 0 = n̄. 

.dφ = −i ωdt  + 2
√

ŴdW (10.32) 

where 

.Ŵ = 
G 

8 n̄ 
(10.33) 

We see that the phase diffusion rate decreases as the mean photon number increases. 

As the rate of energy dissipated from the laser cavity is .κ ̄n we conclude that the 

phase diffusion rate decreases as the rate of energy dissipation increases. This has 

important consequences for clock design. 

The phase diffusion means that the period (. T ) on the limit cycle is a random 

variable, where . T is defined as the time taken for the phase to change by .2π . This is 

a first passage time problem as each period is an independent random variable. The 

distribution of periods is given by the inverse Gaussian distribution [ 9] 

.W (T , α, λ)  =
√

λ 

2π 
T −3/2 exp

[

− 
λ 

2α2T 
(T − α)2

]

t ≥ 0. (10.34) 

where .α, λ are positive real parameters (. λ is called the spread parameter). The mean 

and variance are 

.T = α (10.35) 

.�T 2 = 
α3 

λ 
(10.36) 
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In the laser we find that 

.T = 
2π 

ω 
(10.37) 

.�T 2 = 
8π

Ŵω3
(10.38) 

Clearly the laser above threshold is a noisy clock. A quality measure of this clock 

can be defined as 

.N = 
T 
2

�T 2 
(10.39) 

In this case we see that 

.N = πω/(2Ŵ) (10.40) 

The performance of the clock gets better as the line width gets smaller, that is to say, 

the further the laser is above threshold. It also indicates that the clock gets better the 

more power is dissipated. 

Well above threshold the laser produces Poisson photon statistics. A coherent 

state has the same photon statistics, and this suggests that well above threshold the 

laser might be producing a coherent state. This is not the case. While the intensity of 

the laser is stabilized with a Poissonian distribution the phase of the laser undergoes 

a diffusion process. We previously saw that the coherent amplitude undergoes phase 

diffusion at a rate that decreases as the limit cycle increases. Can we see this directly 

from the master equation? 

We first consider the dynamics of the mean amplitude .〈a(t)〉 for a laser well 

above threshold. Care must be take as there are two different time scales involved; 

relaxation onto the limit cycle and a slower phase diffusion on the limit cycle. 

The effect of this phase diffusion is to cause a decay in the mean amplitude of the 

laser field, as the phase becomes uniformly distributed over.2π . The mean amplitude 

is defined by 

.〈a(t)〉 =  

∞
∑

n=0 

n1/2ρn,n−1(t). (10.41) 

Using (10.13) we find  

. 

d〈a〉
dt  

= −  
G 

2 

∞
∑

n=0 

1/4ns + 1 

1 + (2n + 1)/2ns 

√
nρn,n−1 − 

κ 

2
〈a〉 (10.42) 

Assuming the laser operates well above threshold we can replace . n by . n̄ in the 

denominator of each coefficient. Then as . n̄ ≫ ns 

. 

d〈a〉
dt  

= −  
G 

8 n̄
〈a〉. (10.43) 
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The rate of amplitude decay . Ŵ is thus a direct measure of the phase diffusion rate. 

We now show that . Ŵ is the measured laser linewidth. In oder to do this we consider 

heterodyne detection of the field emitted from the laser cavity. 

We now turn to the noise power spectrum. The key quantity is the two-time 

correlation function 

.G(1) (τ ) = κtr[a†eLτ aρss] (10.44) 

Using the quantum regression theorem we expect that 

.G(1) (τ ) = κ ̄ne−γ |τ | (10.45) 

where .γ = 
G 
8 n̄ 
. 

The noise power spectrum is the Fourier transform of this 

.P(�) = 
κ ̄n 

2π 

γ 

γ 2 + (ω − �)2
(10.46) 

where the line width is 

.γ = 
G 

8 n̄ 
(10.47) 

a Lorentzian. Thus the line width of the laser, well above threshold, is inversely 

proportional to the intensity of the laser and gets smaller as the power dissipation 

increases. 

Problems 

10.1 The van der Pol (VdP) oscillator model was introduced to explain limit cycles 

(sometimes called relaxation oscillations) in electronic circuits. The equations of 

motion are 

. ẋ = y , 

ẏ = ǫ(1 − x2)y − x + a . 

The original model set .a = 0. If  .a �= 0 it is called the driven VdP oscillator. when 

.ǫ = 0 this describes an undamped harmonic oscillator. When .ǫ �= 0 it describes non 

linear damping for .x2 > 1 and non linear gain when .x2 < 1. 

Use a coding environment of your choice to simulate the dynamics of this system 

and investigate the fixed points and limit cycles as a function of .ǫ, a. 

10.2 This problem refers to the photon number statistics of the laser, see (10.17) 

(a) Show that the steady state solution is 

.pss  n = N 
(Gns /κ)n+ns 

(n + ns )! 
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(b) Below threshold .G < κ  show that this can be approximated by 

. pss  n ≈
1 

1 + n̄

(

n̄ 

n̄ + 1

)n 

G < κ  

(c) Show that this is analogous to a thermal distribution with mean photon number 

given by 

. n̄ = 
G 

κ − G 

(d) Show that well above threshold, .G ≫ κ , the steady state distribution is Poisson 

with mean . n̄ = Gns /κ 

10.3 A semiclassical model for a laser is given in terms of the complex amplitude 

of the field in the rotating frame. . α(t) 

. α̇ = −
κα 

2

(

1 −
Gns 

κ(|α|2 + ns )

)

Show that are two fixed points.α0 = 0 and.|α0|2 = G(ns − 1)/κ and investigate their 

stability. This is done by using a linear approximation for the dynamics near each 

fixed point and calculating the eigenvalues of the corresponding matrix. The second 

solution is the above threshold limit-cycle solution. 

Appendix 10.1: Derivation of the Single-Atom Increment 

Consider a single multilevel atom (Fig. 10.1) prepared in the state .|2〉. Level  .|1〉 is 
damped at the rate .γ1 to level .|3〉 and level .|2〉 is damped at the rate .γ2 to level .|4〉. 
Only levels .|1〉 and .|2〉 interact with the cavity field. The master equation describing 

the dynamics of this system is 

. 

dρ 

dt  
= ig

[

a†σ 
− 

12 + aσ 
+ 

12, ρ
]

+ 
γ1 

2

(

2σ 
− 

13ρσ 
+ 

13 − σ 
+ 

13σ 
− 

13ρ − ρσ 
+ 

13σ 
− 

13

)

+ 
γ2 

2

(

2σ 
− 

24ρσ 
+ 

24 − σ 
+ 

24σ 
− 

24ρ − ρσ 
+ 

24σ 
− 

24

)

. (10.48) 

Define the operation 

.J ρ = γ1σ 
− 

13ρσ 
+ 

13 + γ2σ 
− 

24ρσ 
+ 

24, (10.49) 

and the rate operator 

. R = γ1σ 
+ 

13σ 
− 

13 + γ2σ 
+ 

24σ 
− 

24 

= γ1 |1〉 〈1| + γ2 |2〉 〈2| . (10.50) 
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The formal solution to the master equation is 

. ρ(t) = S(t)ρ(0) +
∫ t 

0 

dt1 S(t − t1)J S(t1)ρ(0) 

+
∫ t 

0 

dt1

∫ t1 

0 

dt2 S(t − t1)J S(t1 − t2)J S(t2)ρ(0) + · · ·  , (10.51) 

where 

.S(t)ρ = B(t)ρ B†(t), (10.52) 

with 

.B(t) = exp
[

−ig(a†σ 
− 

12 + aσ 
+ 

12) − γ1t |1〉 〈1| − γ2t |2〉 〈2|
]

. (10.53) 

Assume the initial state 

.ρ(0) = |2〉 〈2| ⊗ ρF (0) = 

∞
∑

n,m=0 

ρnm (0) |n, 2〉 〈m, 2| , (10.54) 

where 

. |n, 2〉 = |n〉F ⊗ |2〉 . (10.55) 

After the action of . J , the atom is in a mixture of the states .|3〉 and .|4〉 and is 

decoupled from the field. The series truncates at first order. 

Use the eigenstates of the free Hamiltonian: 

. |n, +〉 = 
1

√
2 
(|n, 2〉 + |n + 1, 1〉), (10.56) 

|n, −〉 = 
1

√
2 
(|n, 2〉 − |n + 1, 1〉), (10.57) 

to show 

. S(t)(|n, 2〉 〈m, 2|) =
(

c+
n (t) |n, +〉 + c−

n (t) |n, −〉
)(

〈m, +| c+∗
m (t) + 〈m, −| c−∗

m (t)
)

, 

(10.58) 

where 

. c+
n (t) = 

−ie−γ+t/2 

2
√
2��(n)

{[

−i�(n)(1 − �) + 
γ− 

2

]

ei��(n)t 

+
[

i�(n)(1 + �) − 
γ− 

2

]

e−i��(n)t
}

, (10.59) 

c−
n (t) = 

−ie−γ+t/2 

2
√
2��(n)

{[

i�(n)(1 + �) + 
γ− 

2

]

ei��(n)t 

+
[

−i�(n)(1 − �) − 
γ− 

2

]

e−i��(n)t
}

, (10.60) 
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with 

.γ± = 
1 

2 
(γ1 ± γ2), (10.61)

� =
(

1 −
γ 
2 
2 

4�(n)2

)1/2 

, (10.62)

�(n) = g
√
n + 1. (10.63) 

Assume .γ1,2t ≫ 1 so that the first term in the expansion can be neglected. Then 

trace over atomic states: 

. TrA (J S(t) |n, 2〉 〈m, 2|) = 
γ2 

2 
|n〉 〈m|

[

c+
n (t) + c−

n (t)
] [

c+
m (t)

∗ + c−
m (t)

∗]

+ 
γ1 

2 
|n + 1〉 〈m + 1|

[

c+
n (t) − c−

n (t)
] [

c+
m (t)

∗ − c−
m (t)

∗] . 

(10.64) 

Thus, in steady state, the single-atom increment is 

.ρ′ = 

∞
∑

n,m=0 

ρnm (0) (Anm |n〉 〈m| + Bnm |n + 1〉 〈m + 1|) , (10.65) 

with 

.Anm = 
γ2 

2

∫ ∞ 

0 

dt
[

c+
n (t) + c−

n (t)
] [

c+
m (t)

∗ + c−
m (t)

∗] , (10.66) 

Bnm = 
γ1 

2

∫ ∞ 

0 

dt
[

c+
n (t) − c−

n (t)
] [

c+
m (t)

∗ − c−
m (t)

∗] . (10.67) 

We require .Tr(ρ) = 1, so .Ann + Bnn = 1. Diagonal elements are 

.Ann =
(

γ2 

2γ+

)

4�(n)2 + 2γ1γ+ 

4�(n)2 + γ1γ2 
, (10.68) 

Bnn = 1 − Ann =
(

γ2 

2γ+

)

4�(n)2 

4�(n)2 + γ1γ2 
. (10.69) 

To compute the change in the state, write 

.ρ′ = (1 + U )ρ = Pρ. (10.70) 

The diagonal elements of .U ρ are 

. 〈n| U ρ |n〉 = −an+1 pn + an pn+1, (10.71) 

where 

.an+1 = An−1. (10.72) 
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11Quantum Optics at Microwave 
Frequencies 

Abstract 

In this chapter we discuss cavity quantum electrodynamics for microwave pho-

tons. As there is a significant population of thermal photons at microwave frequen-

cies, these experiments require significant cooling. We describe two approaches; 

(a) using Rydberg atoms in high finesse three dimensional microwave cavities 

and (b) superconducting circuits. The latter approach is called circuit quantum 

electrodynamics. 

11.1 Microwave Quantum Optics Using Rydberg Atoms 

Haroche pioneered an approach to cavity QED using circular Rydberg atoms with 

dipole transitions in the microwave regime (.∼51 GHz) coupled to superconducting 

microwave Fabry–Perot cavities [ 1]. A circular Rydberg atom is an atom in an excited 

state with a high principal quantum number (typically .n ∼ 50). The Bohr radius of 

such an excited state is very large with a diameter of .0.25 µm. These states have 

very long lifetimes (. ∼30 ms). Likewise the cavity has a very narrow line-width 

(.κ−1 ∼ 130 ms). The atoms are not trapped inside the cavity, but enter the cavity one 

at a time from a laser-cooled atomic beam. Typically, the vacuum Rabi frequency is 

.�/2π = 50 kHz. The scheme is shown in Fig. 11.1. 

Unlike trapped atom experiments, in these experiments the atom sees a time 

dependent electric field as it samples the spatial mode function of a single cavity 

mode. In effect the interaction is turned on and off when the atom enters and exits 

the cavity. If the two-level transition frequency is close to the cavity frequency we 

can use an interaction Hamiltonian of the Jaynes-Cummings form, 

.H (t) = �ωca
†a + �ωa 

2 
σz − i

�g(t) 

2 
(σ+a − σ−a

†) (11.1) 

where 

.g(t) = g0e
−μ(vt)2/w2 

(11.2) 
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Fig. 11.1 The Rubidium atoms, with pre-selected velocities, are prepared in the circular level with 

principal quantum number.50 by excitation in. O . This is the ground state. The atomic internal state 

is subject to a resonant classical microwave (Ramsey) pulse in.R1 inducing the transition. |g〉 → |e〉
where .|e〉 is a Rydberg state with .n = 51. This dipole then interacts with the microwave field in . C . 

A second Ramsey pulse is applied at.R2 and the atom is measured by state-selective field-ionization 

at . D 

where . x is a transverse displacement from the cavity axis at .x = 0 and the atomic 

velocity is . v, .w determines the beam waist and . μ is a numerical factor. 

If the atom and cavity are on resonance .ωc = ωa the dynamics are given by the 

unitary transformation 

.U (ti ) = e− �ti 
2 (σ+a−σ−a†) (11.3) 

where the effective Rabi frequency is 

.� = 
1 

ti

∫ ti 

0 

g(t ′)dt ′ (11.4) 

If the atom starts in the ground state and the cavity is in the vacuum state we find the 

total state at time . t is 

.|�e(ti )〉 =  cos(�ti /2)|e, 0〉 +  sin(�ti /2)|g, 1〉 (11.5) 

We can thus interpret .� as the vacuum Rabi frequency. This can be measured by 

making an atomic state measurement on the atom after it leaves the cavity. The prob-

ability to find the atom in the excited state is . 1 
2 
(1 + cos�ti ) and this can be sampled 

for various interaction times to determine . �. In a typical experiment . �/2π = 47 

kHz, see Fig. 11.2. The form of (11.5) indicates that the atom is entangled with the 

state of the field in the cavity. This lasts as long as the photon remains in the cavity, 

around .5 µms [ 2]. 

In the case that .�ti = π/2—known as a .π/2 Rabi pulse—the state at the end of 

the pulse is 

.|�e(π/2)〉 =  
1√
2 
(|e, 0〉 + |g, 1〉) (11.6) 

This is the .+ eigenstate of the Pauli operator .σx . This is a pure entangled state 

between atom and field. If we trace out the field state, the atom is in the totally mixed 

state. In the case that .�ti = π the state at the end of the pulse is 

.|�e(π )〉 = |g, 1〉 (11.7) 
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Fig. 11.2 From [ 2] Reviews  

of Modern Physics, Volume 

73, July 2001 

The atom has prepared the cavity in a single photon state. If the atom was prepared 

in an arbitrary superposition state, .cg|g〉 +  ce|e〉, after a . π pulse we see that the field 

is prepared in the pure state .φ〉 =  cg|0〉 +  ce|1〉. This is not a Fock state. In fact, it 
has a weak coherent amplitude as .〈φ|a|φ〉 =  cec

∗
g . 

In order to treat arbitrary cavity field states we can use the dressed states to 

diagonalise the Hamiltonian (see Sect. 9.1.1). Foe example if the field is in a weak 

coherent state and the atom is prepared in the excited state, the probability to find 

the atom in the excited state at time . t is 

.Pe = 
1 

2 
e−|α0|2 

∞
∑

n=0 

|α0|2 
n! (1 + cos�

√
n + 1Ti ) (11.8) 

11.1.1 Dispersive Interaction 

The Jaynes-Cummings interaction results in the exchange of energy between the atom 

and the cavity. Another kind of important interaction, the dispersive interaction, does 

not result in energy exchange. This can arise if the atom and cavity frequencies are far 

from resonance. The starting point is the interaction Hamiltonian in the interaction 

picture 

.H = −i
�g(t) 

2 
(σ+ae

−i
t − σ−a
†ei
t ) (11.9) 

where .
 = ωc − ωa . The unitary time evolution operator satisfies 

. U̇ (t) = 
g(t) 

2 
(σ+ae

−i
t − σ−a
†ei
t )U (t) (11.10) 

The solution can be written in a recursive form 

.U (t) = 1 +
∫ t 

0 

dt ′
g(t ′) 

2 
(σ+ae

−i
t ′ − σ−a
†ei
t ′)U (t ′) (11.11) 
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Nesting the function and truncating to second order we find that 

.U (ti ) = 1 +
∫ ti 

0 

dt ′
g(t ′) 

2 
(σ+ae

−i
t ′ − σ−a
†ei
t ′) (11.12) 

+
∫ ti 

0 

dt ′
∫ t ′

0 

dt ′′
g(t ′) 

2 
(σ+ae

−i
t ′ − σ−a
†ei
t ′) 

× 
g(t ′′) 

2 
(σ+ae

−i
t ′′ − σ−a
†ei
t ′′) 

We now assume that .
 ≫ � as defined in (11.4). Then we can neglect the first term. 

Intuitively we expect the oscillations to be fast compared to the variation of . g that 

this term averages to zero on the time scale of interest. The second term is dominated 

by 

. 

1 

4

∫ ti 

0 

dt ′
∫ t ′

0 

dt ′′g(t ′)g(t ′′)(σ+σ−aa
†e−i
(t ′−t ′′) − σ−σ+a

†ae−i
(t ′−t ′′) ) 

This is approximately .−i χ(σ+σ−aa† − σ−σ+a†a) where 

.χ = 
1 

4


∫ ti 

0 

dt ′g(t ′)2 ≈ �2 

4

(11.13) 

Then the effective Hamiltonian is 

.Hdis  = �χσza
†a (11.14) 

where we have neglected a small atomic frequency shift.∼ χ . We call this the disper-

sive interaction Hamiltonian. Clearly this does not result in energy exchange between 

the field and the atom. 

The dispersive interaction can be used to implement Ramsey interferometry [ 3]. 

In this case we inject weak coherent fields into resonant cavities .R1, R2 in Fig. 

11.1 to implement a .π/2 rotation about the .y−axis on the Bloch sphere. An atom 

entering in the ground state entering in the ground state from O is prepared in the . + 

eigenstate of .σx . After the atom interacts dispersively with the central cavity it then 

again undergoes a resonant .−π/2 pulse prior to being read out in the energy basis. 

This is the inverse of the first .π/2 transformation. The overall effect on an atom 

entering in the ground state is equivalent to the unitary generated by the effective 

Hamiltonian 

.He f  f  = −�χσxa
†a (11.15) 

Using this technique cat states of the microwave field can be created. If the central 

cavity si prepared in a weak coherent state and an atom enters from O in the ground 

state, the output state after .R2 is the state 

.|�〉 =  ei χ ti σx a
†a |g〉|α〉 =  

1√
2 
(|+〉|αeiχ ti 〉 + |−〉|αe−i χ ti 〉 (11.16) 
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where .|±〉 = (|g〉 ± |g〉)/
√
2. If the atom is measured and found to be in state . |g〉

the conditional state of the field is 

.|φ〉 =  
1√
2 
(|αeiχ ti 〉 + |αe−i χ ti 〉 (11.17) 

If .χ ti = π this is an even parity cat state (see Sect. 1.7). If the atom is found in the 

excited state, the conditional state of the field is the odd cat state. 

11.2 Circuit QED 

A very different approach to microwave quantum optics is based on superconducting 

coplanar microwave cavities [ 4]. The dipole emitter in this case is a single supercon-

ducting metallic island separated by tunnel junctions from a Cooper pair reservoir. 

Under appropriate conditions it is possible for the charge on the island to be restricted 

to at most a single Cooper pair. This Cooper pair tunnelling on and off the island con-

stitutes a single large electric dipole system. A possible experimental implementation 

is shown in Fig. 11.3. 

In the figure, an oscillating current in the central conductor produces an oscil-

lating electric field between the central conductor and two ground planes on either 

side. The magnetic field lines wrap around the central conductor. The gaps at the 

end of the central conductor define a microwave resonator and act as an effective 

capacitive coupling between the resonator and the transmission lines on either side. 

The quantisation of this system is done using collective circuit variables describing 

an equivalent circuit [ 4]. See Fig. 11.3. The transmission lines act as dissipative 

reservoirs for the microwave resonator [ 5]. 

The Hamiltonian for this circuit is 

.H = 
1 

2L 
�̂2 + 1 

2CE 

Q̂2 + 
1 

2CJ 

( Q̂ − Q̂ J )
2 − E J cos

(

2e

�
�̂J

)

(11.18) 

where .E J = �Io 
2e 

and .I0 is the critical junction current, and .L = L1 + L2, 

. 

1 

CE 

= 1 

C1 + Cin  

+ 1 

C2 + Cout 

. (11.19) 

Fig. 11.3 Left: A co-planar microwave resonator is coupled to a Cooper pair box electric dipole. 

Right: equivalent circuit 
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The collective quantum degrees of freedom are: . Q̂, Q̂ J are defined by 

. Q̂ = CE 

d �̂

dt  
+ CE 

d �̂J 

dt  
(11.20) 

. Q̂ J = CE 

d �̂

dt  
+ (CE + CJ ) 

d �̂J 

dt  
(11.21) 

with . �̂ = �̂1 + �̂2. The canonical commutation relations are 

. [ ̂�, Q̂ ] =  i� (11.22) 

. [ ̂�J , Q̂ J ] =  i� (11.23) 

The term proportional to .( Q̂ − Q̂ J )
2 is the quadratic coupling between the two 

degrees of freedom. 

We introduce a charge basis via the number operator . N̂ defined by . N̂ = e Q̂ J that 

describes the number of excess Cooper pairs on the Cooper pair island, 

. N̂ = 

∞
∑

n=−∞ 

N |N 〉〈N | (11.24) 

The canonical commutation relations then imply 

. cos

(

2e

�
�̂J

)

= 
1 

2 

∞
∑

n=0 

|N 〉〈N − 1| + |N − 1〉〈N | (11.25) 

To begin with we will assume that there is a classical DC bias gate acting on the 

junction and ignore the circuit degrees of freedom in the resonator. The Hamiltonian 

for the junction is 

.Hg = 4Ec(Ng − N̂ )2 − 
E J 

2

∑

N 

|N 〉〈N − 1| + |N − 1〉〈N | (11.26) 

where .Ec = e2 

2(CJ+Cg ) 
, the bias voltage on the junction is .Vg = 2eNg/Cg and . Cg 

is the total capacitance of the junction with respect to ground. The energy levels 

can be changed by changing .Ng . When .Ng = N + 1/2 the levels with . n = N , n = 

N + 1 are degenerate (with energy .EC ) when .E J = 0. This value of .Ng is called the 

degeneracy point. When .E J �= 0 this degeneracy is lifted. In Fig. 11.4 we plot the 

lowest few energy eigenvalues (11.26) for.Ng = 5/2. Note that the two-lowest levels 

are well separated from the next excited state. If field in the microwave resonator has 

a frequency close to the splitting of the two lowest levels we can approximate the 

dipole with only these two levels: a kind of engineered artificial atom. 

We can then write .Hg as 

.Hg = 2Ec σ̄z − 
E J 

2 
σ̄x (11.27) 
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Fig. 11.4 The four lowest 

energy levels of a 

superconducting junction for 

.Ng = 3/2, Ec = 0.25 and a 

.E J = 0.0, b . E J = 0.1 

where in the number basis . σ̄z = |N + 1〉〈N + 1| − |N 〉〈N |, σ̄x = |N + 1〉〈N | +  

|N 〉〈N + 1|. 
We introduce annihilation and creation operators as follows. 

.. �̂ = i

√

�ωc L 

2 
(a − a†) (11.28) 

. Q̂ =
√

�ωcCE 

2 
(a + a†) (11.29) 

where .ωc = (LCE )
−1/2. In a typical experiment this is .ωc/2π ∼ 8 Ghz. The zero 

point rms electric field is .

√

�ωc 

2CE 
. In a typical experiment this is about .∼1 µV [  4]. 

Superconducting circuits necessarily use low temperature systems to reach the super-

conducting transition. However it is important to understand that much colder tem-

peratures are required. This is because the thermal occupation of microwave field 

modes at room temperature is very high. In order to reach a quantum optical regime 

we need .�ωc > kB T . At Ghz frequencies this requires temperatures in the tens to 

hundreds of millikelvin; dilution fridge temperatures. 

Using the two-level approximation for the junction, the full circuit Hamiltonian 

in (11.18) can be written in the charge basis as 

.H = �ωca
†a + Hg − �ḡ(a + a†) σ̄z (11.30) 

where 

.ḡ = e 

2CJ

√

�ωcCE 

2 
(11.31) 
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We next make a change of basis to the two eigenstates of .Hg , using . σα = U † σ̄αU 

for each Pauli matrix. This is a rotation around the . y axis on the Bloch sphere, Then 

.H = �ωca
†a + �ωJ 

2 
σz − �ḡ(a + a†)(μσz + νσx ) (11.32) 

where 

.ωJ = 2EC

√

1 + 
E2 
J 

16E2 
C 

(11.33) 

where .μ, ν are direction cosines. In the case of a transmon device .E J /EC is large 

adn we can approximate the Hamiltonian as 

.H = �ωca
†a + �ωJ 

2 
σz −

�ḡ 

2 
(a + a†)σx (11.34) 

If we are in the weak coupling regime . g is much less than the line-width of 

the resonator, and the spontaneous emission rate of the two level system, we can 

make the rotating wave approximation and use the Jaynes-Cummings Hamiltonian. 

The Rabi frequency is then .� = ḡ. In typical experiments in this coupling regime 

.�/2π ∼ 200 MHz. However it is quite possible to engineer devices to be in a ultra-

strong coupling regime for which .g ∼ ωJ . This is very difficult to achieve in atom 

physics. 

The form of the interaction in (11.34) suggests a Jahn-Teller model [ 7]. The 

interaction has a parity symmetry with respect to the unitary transformation . U = 

exp[iπ(a†a + σz)]. It exhibits a kind of quantum phase transition as the parameter 

.λ = 
ḡ2 

ωJ ωc 
is varied. At .λ = 1/

√
3. Above this threshold the energy eigenstates are 

entangled. The ground state, and first excited state, can be approximated by 

.|ǫ0〉 =  
1√
2

[

|+〉 ⊗ |φ+〉 + |−〉 ⊗ |φ−〉
]

(11.35) 

.|ǫ1〉 =  
1√
2

[

|+〉 ⊗ |φ+〉 − |−〉 ⊗ |φ−〉
]

(11.36) 

where .σx |±〉 = ±|±〉 and .|φ±〉 are oscillator coherent states given by the displace-
ment operator as, 

.|φ±〉 =  D

(

± 
ḡ 

2ωc

)

|0〉 . (11.37) 

11.2.1 Measurement in Circuit QED 

We now turn to the role of quantum measurement noise in superconducting quantum 

circuits using a dispersive coupling [ 8]. The experiment we describe is based on a 
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Fig.11.5 The experimental dispersive scheme for a transmon quantum oscillator by [ 8]. A transmon 

two level system is dispersively coupled to a superconducting microwave cavity, and the cavity 

and qubit are driven coherently. The output field is directed to a heterodyne detector (Josephson 

parametric amplifier) that produces the clock signal for counting 

superconducting quantum circuit driven by a microwave source containing a trans-

mon TLS, see Fig. 11.5. We will describe a measurement of the state of the TLS in the 

energy basis. This is done by dispersively coupling the transmon to a superconduct-

ing microwave cavity. When the cavity and qubit are driven coherently the phase of 

the coherent field is periodically modulated and this modulation may be monitored 

by subjecting the output field of the resonator to a heterodyne measurement. 

In this case the stochastic master equation is 

.dρc = −i E[a + a†, ρc]dt  − i�[σx , ρc]dt (11.38) 

−i χ [a†aσz, ρc]dt  + γ D[σ−]ρc + κD[a]ρcdt  + 
√

ηκH[a]ρcdW  (t). 

where . χ is the dispersive coupling, . γ is qubit spontaneous decay rate, . κ is the cavity 

damping rate, and . η is the homodyne detector efficiency efficiency. The final term 

proportional to the Wiener noise increment reflects the state updating required for 

conditional dynamics. We will assume that the readout cavity is rapidly damped so 

that it responds quickly to the dynamics of the TLS. This means it can be adiabatically 

eliminated. The conditional master equation for the reduced state of the qubit (.ρσ ) 

becomes, 

.dρσ = −i[Hσ , ρσ ]dt  + γ D[σ−]ρσ dt  + ŴD[σz ]ρσ dt  − 

√
ŴH[σz ]ρσ dW (t). (11.39) 

Here .Hσ = �σx + 
σz and 

.

Ŵ

κ 
= 4

(χ 

κ

)2 
n0 measurement dephasing rate (11.40) 

.




κ 
=

(χ 

κ

)

n0 effective Stark shift (11.41) 

.n = |α0|2 = 4|E |2/κ . Note that . Ŵ can be changed by varying . E . 
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Fig. 11.6 The unconditional dynamics for .〈σz〉 for over-damped (left) and under-damped (right) 

As we are dealing with a two level system the dynamics can be described in terms 

of the Bloch sphere conditional dynamics. 

. dX  = −2
Ydt  − γ2 Xdt  

dY  = 2
Xdt  − 2�Zdt  − γ2Ydt  

d Z  = 2�Ydt  − γ (1 + Z )dt  − 2
√

Ŵ(1 − Z2)dW  

where .X = 〈σx 〉c etc, and .γ2 = γ /2 + 2Ŵ is the transverse decay rate of the con-

ditional polarization. In the experiment the spontaneous emission rate, .γ ≪ 1, so  

.γ2 ≈ 2Ŵ. 

The unconditional dynamics is obtained by averaging over the noise. .dW  = 0. 

There are two regimes, under-damped for which .� > Ŵ/2 and over-damped for 

which .� < Ŵ/2. The unconditional average for . Z is shown in Fig. 11.6. The condi-

tional dynamics corresponding to each of these regimes are shown in Fig. 11.7. In  

both cases, the noise is quantum not thermal. It arises from measurement back-action 

itself. There is a transition from a diffusive under-damped conditional dynamics to 

a jump conditional dynamics in the over-damped regime. This is a partical manifes-

tation of the quantum Zeno effect. It occurs when the rate of information extracted 

by the measurement is so strong that it overwhelms the coherent periodic dynamics. 

In Fig. 11.8 we show the homodyne signal in the quantum jumps regime for the 

experiment of [ 8]. 

11.3 Circuit Non Linear Optics 

There are many experiments that exploit the highly non linear microwave suscep-

tibility of a supercodncuting device in a resonator. Much large Kerr non linearities 

are possible then one can achieve in non liner optics. For example, in experiments at 

Chalmers [ 9], a quarter wave coplanar microwave cavity was grounded at one end 

via a superconducting quantum interference devices (SQUIDs) that can be modelled 

as a large Kerr non linearity. By modulating the flux through the loop, the cavity 

frequency can be modulated. If the flux is varied at twice the cavity frequency this 

implements a parametric driving of the cavity field. The cavity field also exhibits a 

large effective nonlinear susceptibility that can be modelled as an intensity dependent 

phase shift. 
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Fig. 11.8 Observed quantum jumps in the strong measurement regime. Sample of the time traces 

indicating quantum jumps (between ground and excited states) with different qubit drive amplitudes 

(. �, shown as different colours with different vertical offsets). In each curve, a low signal indicates 

the ground state, and a high signal indicates the excited state. Thermal noise yields a small excited 

state population when using zero qubit drive. As the qubit drive amplitude increases, the qubit 

approaches an equal amount of time spent in the ground and excited states 

We will discuss the model of [ 10] in which a microwave resonator containing a 

large Kerr non linear cavity is simultaneously parametrically driven and linearally 

driven. The Hamiltonian in the interaction picture is 

.H = �
â†â + �
(

ǫ∗â + ǫâ†
)

+ �χ ̂a†2 â2 + �

2

(

κ∗â†2 + κ ̂a2
)

, (11.42) 

We assume that the dissipation is described by the usual master equation 

. ρ̇ = −  
i

�
[H, ρ] +  γ D[a]ρ (11.43) 

This model has an exact steady solution. Using the positive P representation we find 

the system obeys the Ito stochastic differential equations 

. 

dα = −(γ + i
)α dt  − iǫ dt  − i(χ α2 + κ)β dt  

+
[

−i (κ + χα2)
]1/2 

dz1, 

dβ = −(γ − i
)β dt  + iǫ∗ dt  + i (χβ2 + κ∗)α dt  

+
[

i (κ∗ + χβ2)
]1/2 

dz2. 

(11.44) 

On the sub manifold .β = α∗ the semiclassical equations can be found as 

. 

dα 

dt  
= −(γ + i
 + iχ |α|2)α − iǫ − iκα∗, (11.45) 
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The fixed points of this equation have a rich bifurcation structure [ 10]. 

The Fokker-Planck for the complex P representation satisfies potential conditions 

and this there is an exact steady state in the form 

.Ps (α, β) = Ne−V (α,β) , (11.46) 

with 

. Ps (α, β) = N

(

α0 − α 

α0 + α

)μ (

α∗
0 − β 

α∗
0 + β

)μ∗
(

(χ α2 + κ)
)λ (

(χβ2 + κ)
)λ∗ 

e2αβ , 

(11.47) 

with .λ = −1 + 
/χ − iγ /χ  and .μ = iǫ/
√

κχ . Systems of this kind can be con-

figured as a superconducting parametric amplifier [ 11]. 
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12Ion Traps 

Abstract 

The ability to trap an individual ion and cool it close to the ground state of vibra-

tional motion has enabled precise quantum control to be achieved together with 

very high efficiency measurement. The technology originated over four decades 

ago in the effort to develop ultra high precision spectroscopy with particular 

application to frequency standards. In optical ion traps, external lasers are used 

to couple the internal electronic motion of trapped ions to the vibrational degrees 

of freedom. This enables a plethora of quantum control protocols, including an 

implementation of quantum computation, and many analogue quantum simula-

tions of few body quantum systems. 

12.1 Introduction 

One of the keys to the success of ion traps is the ability to detect the electronic state 

of a single ion with high efficiency. This is done by laser induced fluorescence on a 

dipole allowed transition, scattering millions of photons per second. The idea goes 

back to a proposal of Dehmelt in 1975 [ 2] and appears in various applications such 

as electron shelving, cycling transitions and quantum jumps [ 3]. Another key to the 

success of ion traps is the invention of sub Doppler cooling techniques, particularly 

resolved side band cooling [ 4]. This makes it possible to prepare a single ion in 

a state with very few quanta of vibrational excitation, even so few as to reach the 

vibrational ground state. A single trapped ion is well approximated by a particle 

moving in a three dimensional harmonic potential. It is possible to stochastically 

remove vibrational energy by laser induced Raman transitions coupling electronic 

and vibrational degrees of freedom. In effect, heat is removed from the vibrational 

motion of of the ion and pumped into the very low temperature heat bath associated 

with the much higher frequency of the fluorescent radiation. 
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Fig. 12.1 A schematic representation of a linear radio frequency ion trap (after [ 4]) 

12.2 Trapping and Cooling 

It is not possible to trap a charged particle in a static potential. This is because 

Laplaces equation implies there is always one unstable (not trapped) direction in the 

electrostatic potential. However a time dependent electric potential can produce an 

effective harmonic potential for a charge particle. In Fig. 12.1 we show a possible 

configuration of electrodes. 

The time dependent potential seen by the ion can be written 

.V (x, y, z, t) = 
V̄ 

2 
(kx x

2 + ky y
2 + kzz

2) + 
1 

2 
V cos(ωr f  t)(k

′
x x

2 + k′
y y

2) (12.1) 

where .ωr f  is the frequency of the time dependent potential and the effective spring 

constants must satisfy Laplace’s equation which implies, . kx + ky + kz = 0, k′
x + 

k′
y = 0. If we assume the following conditions [ 4] 
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. ax = 
4Z |e| V̄ kx 

mω2 
r f

≪ 1 

qx = 
2Z |e|Vk′

x 

mω2 
r f

≪ 1 

then the motion in the .x-direction is approximately harmonic. Similarly for the 

motion in the .y-direction. We assume isotropy in the .x − y plane, so that . kx = 

ky, k
′
x = k′

y and the motion is harmonic with the secular frequency 

.ν =
(

ax + q2 x /2
)1/2 

ωr f  /2 (12.2) 

There is a smaller amplitude oscillatory motion at frequency .ωr f  superimposed on 

the secular motion, called the micromotion, which we neglect. In a recent experiment 

with . 
9Be+, the axial frequency was about . 3 MHz while the transverse frequency was 

about . 8 MHz. The static potential due to end caps gives harmonic confinement along 

the trap axis (.z-direction) and micromotion is absent. If this is kept weak, multiple 

ions can be trapped in a line along the .z-direction. In summary, an ion is trapped 

in a harmonic potential in all three dimensions and we assume that one direction, 

the axial direction, has a lower frequency than motion in the other two orthogonal 

directions, the transverse directions. Typically the transverse frequencies are three 

to four times more than the axial. 

The quantum description of the centre of mass motion of the ion is given in terms 

of the eigenstates of the Hamiltonian 

.H = �νa† z az + �νt (a
† 
xax + a† yay) (12.3) 

The motion is thus separable into axial and transverse motion and, to be specific, we 

now concentrate on the axial motion alone, although much of the discussion can be 

applied to the transverse motion as well. Henceforth, as we neglect the transverse 

motion, we will drop the subscript on .az, a
† 
z . 

Many different kinds of ions can be trapped, but availability of lasers limits the 

kinds of ions that can be easily laser cooled. For example, the Wineland group at NIST 

Colorado uses . 9Be+ while the Blatt group in Innsbruck uses . 40Ca+. When the ion is 

first trapped it is in a highly excited state of its vibrational motion, corresponding to 

a temperature of the order of .104 K. Cooling typically proceeds in two stages. The 

first stage is based on Doppler cooling and is very efficient, the second stage is based 

on resolved sideband cooling (see section below). 

Ion traps are a remarkably versatile quantum devices for a number of reasons. 

Firstly, it is possible to coherently couple the vibrational motion and the internal 

electronic state using an external laser. Secondly, resolved sideband cooling enables 

the vibrational motion to be prepared in its ground state with probability approaching 

unity. This is done using an external laser to induce Raman transitions between the 

ground and excited internal electronic state which absorb one photon and one phonon 

of vibrational per excitation cycle. Finally, the method of fluorescence shelving 
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enables the internal electronic state of a single trapped ion to be measured with 

efficiency approaching unity. In order to understand these three features we need 

to begin with a description of how an external laser can couple the vibrational and 

electronic degrees of freedom. 

We will assume that the external laser can couple two internal electronic states, the 

ground state .|g〉 and the excited state .|e〉. This might involve a direct electric dipole 

transition. However for quantum information applications it typically involves a 

Raman two photon transition connecting the ground state to an excited meta-stable 

state. In either case the Hamiltonian describing the system is (see (9.16)), 

.H = �νa†a + �ωAσz +
��

2

(

σ−e
i (ωL t−kL q̂) + σ+e

−i (ωL t−kL q̂)
)

(12.4) 

where . q̂ is the operator for the displacement of the ion from its equilibrium position 

in the trap, . ν is the trap (secular) frequency, .� is the Rabi frequency for the two 

level transition, .ωA is the atomic transition frequency, and .ωL , kL are the laser 

frequency and wave number. The sigma matrices are defined in Sect. 9.1. There are 

three frequencies in the problem: .ν, ωA and .ωL . A wide variety of processes can be 

made dominant by carefully choosing relationships between these three frequencies. 

Note that the phase of the laser field as seen by the ion is dependent upon the position 

of the ion. As the ion moves harmonically in the trap the phase is modulated at the 

trap frequency. As we shall see, this leads to sidebands in the absorption spectrum 

for the two level system. 

The ion position operator, in terms of the vibrational raising and lowering opera-

tors, is 

.q̂ =
(

�

2mν

)1/2 

(a + a†) (12.5) 

We now define the Lamb-Dicke parameter, . η 

.η = kL

(

�

2mν

)1/2 

= 2π�xrms  /λL (12.6) 

where the r.m.s position fluctuations in the oscillator ground state is .�xrms . Then 

moving to an interaction picture via the unitary transformation 

.U0(t) = exp[−i νa†at − iωAσz t] (12.7) 

the interaction Hamiltonian can be written as 

.HI (t) =
��

2

(

σ− exp[−i η(ae−iνt + a†eiνt )] exp[−i (ωA − ωL )t] +  h.c
)

(12.8) 

The exponential of exponentials make this a complicated hamiltonian system. How-

ever in most ion trap experiments the ion is confined to a spatial region that is signif-

icantly smaller than the wavelength of the exciting laser so that we may assume that 
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the Lamb-Dicke parameter is small.η <  1 (typically.η ≈ 0.01 − 0.1). Expanding the 

interaction to second order in the Lamb-Dicke parameter gives 

. HI (t) =
��

2 
[1 − η2a†a]

(

σ−e
−iδt + σ+e

i δt
)

−i
��η 

2

(

ae−iνt + a†ei νt
)

e−iδt σ− + i
��η 

2

(

ae−i νt + a†ei νt
)

eiδt σ+ 

−��η2 

4

(

a2e−2i νt + (a†)2e2iνt
) (

e−iδt σ− + eiδt σ+
)

where the detuning of the laser from the atomic frequency is .δ = ω − ωL . 

By carefully selecting . δ to be positive or negative integer multiples of the trap 

frequency, various resonant terms may be extracted and all time dependent terms 

neglected. In the first case, known as the carrier excitation, .δ = 0, and the resonant 

terms are 

.Hc = ��(1 − η2a†a)σx carrier excitation (12.9) 

where .σx = (σ− + σ+)/2. If we choose .δ = ν so that the laser frequency is detuned 

below (to the red of) the carrier frequency by one unit of trap frequency, . ωL = 

ωA − ν, the resonant terms are 

.Hr = i
�η�

2

(

aσ+ − a†σ−
)

first red sideband excitation (12.10) 

This is just the Jaynes-Cummings Hamiltonian except that it involves the absorption 

of a trap phonon as well as one laser photon. On the other hand we can choose. δ = −ν 

so that .ωL = ωA + ν and the laser is detuned one unit of vibrational frequency to 

the blue of the carrier, the resonant interaction Hamiltonian is 

.Hb = i
�η�

2

(

a†σ+ − aσ−
)

first blue sideband excitation (12.11) 

This describes an excitation process that absorbs one photon from the laser and 

emits one trap phonon. Continuing in this way we can define the second red side-

band excitation .δ = 2ν and second blue sideband excitation .δ = −2ν, and so on. In 

Fig. 12.2 we give an energy level diagram that represents the carrier, red and blue 

sideband excitations. 

If two laser fields are used to simultaneously drive the red and blue sideband we 

can combine the two Hamiltonians to get 

.Hrb  = − �η�

2 
(a + a†)σy (12.12) 

where .σy = −i(σ+ − σ−). 

Once excited to .|e〉 the ion can spontaneously decay to the ground state. For 

a dipole allowed transition this can be quite fast, thus enabling another excitation 

process to occur. In the case of red sideband excitation the net result is to remove 
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Fig.12.2 Energy level diagram for a carrier b first red sideband and c first blue sideband excitation 

one phonon per excitation cycle. This is the basis of sideband cooling. In effect the 

external laser has coupled the vibrational motion to a very low temperature heat 

bath: the vacuum radiation field at frequency .ωA. Of course it is only possible to 

address the sidebands if the laser can be accurately tuned to each. As each transition 

is homogeneously broadened by a width equal to the spontaneous emission rate, 

. γ , we require that .ν >  γ  for resolved sideband cooling. An explicit expression for 

the spectrum of resonance fluorescence for a single trapped ion follows from the 

methods given in Chap. 9. A detailed calculation in the low intensity limit (.� < γ  ) 

for a traveling wave field, by Cirac et al. [ 5] shows that the spectrum of the motional 

sidebands exhibits the following features 

• the first red side band is centred on .ωL = ωA − ν and the first blue sideband is 

centred on .ωL = ωA + ν with line-widths determined by 

.γs = η2
(

�

2

)2 

[P(ν + δ) − P(ν − δ)] (12.13) 

where.P(δ) = γ /(γ  
2 + δ2) and.δ = ωL − ωA and. γ is the spontaneous emission 

rate. 
• the ratio of the peak height of the red sideband to the blue side band is . ( ̄n + 1)/n̄ 

where . n̄ is the steady state mean photon number of vibrational excitation. 

Note that the heights of the peaks are different reflecting the fact that the red transition 

involves the absorption of a phonon while the blue involves the emission of a phonon. 

Resolved sideband cooling requires that the exciting laser be tuned one unit of 

trap frequency below the atomic transition frequency. The atom is then excited by 

the absorption of one laser photon and one trap phonon. In the Lamb-Dicke limit 

relaxation is dominated by spontaneous emission into the spectral peak at the carrier 

frequency (.ω = ωA). Thus on each excitation cycle one unit of vibrational energy 

is removed on average. A simple rate equation method suffices to understand this 
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Fig. 12.3 Energy level diagram showing fluorescence readout of the ground atomic state. A strong 

probe laser drives a dipole allowed transition between the ground state .|g〉 and an auxiliary state 
.|a〉 which decays back to the ground state at a rate . Ŵ scattering many many photons. Also show is 

fluorescent signal on the probe transition when a weak laser couples the ground and excited state 

(reproduced, with permission, from Leibfried et al. [ 4]) 

phenomenon. In Exercise 12.1, we find that the rate of change of the average phonon 

number is given by 

. 

d n̄ 

dt  
= −γ

(

η2�2 n̄ 

2η2�2 n̄ + γ 2

)

(12.14) 

Note that as the cooling proceeds, the rate decreases until the vibrational ground state 

is a steady state. In a more careful treatment we need to consider heating mechanisms, 

for example off-resonant excitation of the blue sideband [ 4], and the probability of 

populating the vibrational ground state in the steady state is less than unity. Despite 

this, resolved sideband cooling can prepare an ion in the vibrational ground state with 

a probability greater than.99%. Ground state cooling in all three dimensions was first 

achieved by the NIST group in Boulder [ 6]. Other heating mechanisms due to exper-

imental artifacts are often important. For example, fluctuating charge distributions 

on the trap electrodes lead to a stochastic displacement of the centre of the trap. In 

Exercise 12.2 we consider this example in more detail. The experimental technique 

for determining the probability of occupying the ground state will be discussed after 

we consider the fluorescence technique for determining the ion electronic state. 

In order to readout the state of the ion, an additional auxiliary level can be coupled 

by a strong laser to one or the other of the ground or excited states, to be specific let 

us say the ground state (see Fig. 12.3). If the ion is in the ground state when the probe 

laser is turned on, fluorescent photons are scattered in all directions and can easily 

be detected. On the other hand if the ion is in the excited state, it is not resonant with 

the probe laser and no photons are scattered: the ion remains dark. 

If we now apply a weak laser to couple the ground and excited states, incoherent 

transitions occur .|g〉 ↔ |e〉. These transitions are incoherent as the strong coupling 
to the .|a〉 state destroys coherence between the ground and excited states, see [ 7]. 
The net result is that the fluorescent signal due to the probe laser blinks on and off in 

fashion of a random telegraph process. A typical signal is shown in Fig. 12.3. In so  

far as fluorescence indicates that the ion is in the ground state, the random switching 
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of the fluorescence is a direct indicator of quantum jumps between the ground and 

excited states. These jumps were first reported in a number of laboratories [ 3]. 

The efficiency of the readout is a function of the integration time of the fluores-

cence signal, that is to say, how long we need to monitor the fluorescence to be sure 

that we are in period of high intensity. This time must be at least of the order of the 

average time between photon emission events. In an experiment however there are 

other sources of error, such as dark counts in the detector and typically the minimum 

time to distinguish ground and excited states is of the order of . 2 ms. We capture the 

quality of the readout in an overall efficiency, . η, which is the conditional probability 

for the ion to be detected in the ground state given that it was prepared in the ground 

state before the probe laser was turned on. 

We now return to the experimental determination of the efficiency of sideband 

cooling. The objective is to determine the state of vibrational motion by coupling it to 

the internal state of the ion and then using the fluorescent readout technique described 

above. At the end of a cooling stage, the electronic state of the ion is first coupled to 

its vibrational motion for a time . T using the first red and blue sideband transitions. 

If we write the probability for the atom to found in the excited state after time . T 

as .P R e (T ) and .P 
B 
e (T ) for red and blue sideband excitation respectively it can be 

shown (see Exercise 12.3) that the mean phonon number . n̄ is given by . n̄/(1 + n̄) = 

P R e (T )/P 
B 
e (T ). Thus measurement of the ratio of excitation probability on the first 

red and blue sideband yields . n̄ directly, and the temperature of vibrational motion 

inferred. 

12.3 Novel Quantum States 

The ability to carefully control the coupling between internal electronic state of the 

ion and its vibrational motion in the trap enables us to carefully engineer novel 

quantum states of the vibrational degree of freedom. Lloyd and Braunstein [ 8] show 

that universal simulation of a single bosonic mode is possible if the Hamiltonian 

includes operators that are at least cubic in the creation and annihilation operators, 

for example .{a, a†, a2, a† 2, (a†a)2}, is universal. We could drop the quartic term 

and replace it with the cubic term .(a + a†)3, an important case we will consider in 

Chap. 15. The first two operators generate displacements (Heisenberg-Weyl group) 

the next two quadratic operators generate the squeezing transformations (SU(1,1)). 

The quartic operator is the Kerr nonlinearity. Starting from the vacuum state, all 

states in the Hilbert space can be reached by time-dependent Hamiltonians involving 

the four operators. The first four generate only positive Wigner functions. Adding 

the Kerr non linearity gives us the entire state space including access to states with 

negative Wigner functions. 

Suppose that over some time interval we implement the Hamiltonian 

.HT = �ω0a
†a + �g 

2 
(a + a†)σz +

��x 

2 
σx (12.15) 
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It is easy to see that we can write the Hamiltonian in (12.15) as  

.HT = �ω0(a
† + μσz)(a + μσz) +

��x 

2 
σx (12.16) 

up to an additive constant with.μ = 
g 

2ω0 
a dimensionless parameter. This looks like it 

is a simple displacement transformation acting on the oscillator and can be removed 

using the unitary transformation 

.Up(μ) = eμσz (a−a†) = cosh(μ(a − a†))I + sinh(μ(a − a†))σz (12.17) 

as 

.U † 
p(μ)aUp(μ) = a − μσz (12.18) 

This is the polaron transformation as it mixes the Hilbert space of oscillator and 

qubit. The transformed Hamiltonian is 

.U † 
p(μ)HT Up(μ) = �ω0a

†a (12.19) 

+��x 

2

(

cosh(2μ(a − a†))σx − i sinh(2μ(a − a†))σy

)

Clearly this satisfies the Lloyd-Braunstein condition for universal control of the oscil-

lator Hilbert space if we do not truncate the hyperbolic functions below cubic. You 

can use this approach to generate the cubic phase gate (see (15.98)) on the vibrational 

degree of freedom. This is a universal gate for continuous variable (CV) quantum 

computation, see Chap. 15. In other words, an ion trap quantum computer can also 

implement universal quantum computation using only the vibrational degrees of 

freedom of multiple trapped ions. 

As another example we will here consider the preparation of a ‘cat state’: a pure 

quantum state in which the two internal electronic states are correlated with different 

coherent states of the oscillator. There are a number of ways to prepare the vibrational 

motion in a coherent state, .|α〉. The ion is first cooled to the vibrational ground state. 
A classical uniform driving force oscillating at the secular frequency, . ν, can then 

be applied by changing the bias conditions on the trap electrode. Alternatively a 

non adiabatic displacement of the trap centre can be made again by changing the 

bias conditions. Finally a spatially varying Stark shift can be applied by using the 

moving standing wave that results from two laser beams with frequency difference 

.�ω = ν to resonantly drive the motion of the ion in the trap. If the laser polarisation 

is carefully chosen this will result in a force that depends on the internal electronic 

state. From the point of view of the electronic and vibrational states, this is a two 

photon Raman process depicted in Fig. 12.4 that Stark shifts the excited state .|e〉. 
We will refer to this choice of Raman pulses as the Raman displacement pulse. If we 

detune the Raman lasers by a frequency .�ω = ωA we can drive a carrier transition 

that coherently superposes the ground and excited states. We will refer to this choice 

of Raman pulses as the carrier pulse. 
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Fig.12.4 A schematic indication of the optical transitions required to prepare a single ion in a linear 

superposition of displaced ground states (coherent states). On the left is the Raman pulse excitation 

scheme for applying a force to the ion conditional on it being prepared in the excited electronic 

state. On the right is the carrier pulse excitation scheme for producing coherent excitations of the 

internal electronic state leaving the vibrational motion unaffected. The vibrational frequency is . ν 

while the atomic transition frequency is . ωA 

The state-dependent displacement is described by the interaction picture Hamil-

tonian 

.Hd = �χ(t)(a + a†)|e〉〈e| + ��(t)σx (12.20) 

the coupling constants . χ and .� are shown as time dependent as they can be turned 

on and off with the external Raman displacement pulse (. χ ) or the external carrier 

pulse .(�). 

Assume that initially the electronic system and vibrational motional are in the 

ground state, .|ψ(0)〉 = |0 ⊗ |g〉. In the first step, we apply a carrier pulse (so .χ = 0) 

for a time, . T , such that .ωT = π/2. This gives the state transformation 

.|0〉 ⊗ |g〉 π/2=⇒ |0〉 ⊗  
1√
2 
(|g〉 + |e〉) (12.21) 

In the second step we turn off the carrier pulse and turn on the displacement 

Raman pulse for a time . τ . Only the .|e〉 component sees the displacement, according 

to (12.20), so the state is transformed as 

. 

1√
2 
(|0〉 ⊗ |g〉 + |0〉 ⊗ |e〉) displace=⇒ 

1√
2 
(|0〉 ⊗ |g〉 + |α〉 ⊗ |e〉) (12.22) 
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In the third step we apply a .π = �T carrier pulse that flips the electronic states and 

inserts a . π phase shift 

. 

1√
2 
(|0〉 ⊗ |g〉 + |α〉 ⊗ |e〉) π=⇒ 

1√
2 
(|α〉 ⊗ |g〉 − |0〉 ⊗ |e〉) (12.23) 

In the fourth step we apply another state selective displacement with a relative phase 

. φ, 

. 

1√
2 
(|α〉 ⊗ |g〉 − |0〉 ⊗ |e〉) displace=⇒ 1√

2 
(|α〉 ⊗ |g〉 − |αeiφ〉 ⊗ |e〉) (12.24) 

In the fifth and final step, we apply another .π/2 pulse to give 

. 
1√
2 
(|α〉 ⊗ |g〉 − |αei φ〉 ⊗ |e〉) π/2=⇒

(

|α〉 − |αei φ〉
2

)

⊗ |g〉 +
(

|α〉 + |αei φ〉
2

)

⊗ |e〉

≡ |α−〉 ⊗ |g〉 + |α+〉 ⊗ |e〉

If we now readout the state of the ion, the conditional states are highly non classical 

superpositions of two different coherent states of vibrational motion, .|α±〉 known in 
quantum optics as cat states. 

We thus have correlated different motional states with each of the electronic 

states. This kind of entangled state is reminiscent of Schrödinger’s famous thought 

experiment in which two different metabolic (and thus macroscopic) states of a 

cat are correlated with a two level system in just this way. Indeed if we stopped 

after the second step the cat state analogy could be sustained with the identification 

.|α〉 → |alive〉 and .|0〉 → |dead〉. However pursuing the analogy to the final state at 
the end of step 5 produces the rather disturbing prospect (for the cat at least) of 

correlating different superposition of metabolic states with the internal electronic 

states. 

In the experiment of Monroe at al. [ 9], the presence of an entangled state of 

different coherent states was demonstrated by measuring the electronic state at the 

end of step 5. Repeated measurements enabled a sampling of the distribution .Pg(φ), 

for different values of . φ. This is given by 

. Pg(φ) = 〈α−|α−〉

= 
1 

2

[

1 − e−|α|2(1−cos φ) cos
(

|α|2 sin φ
)

]

(12.25) 

In Fig. 12.5 we reproduce the results from Monroe et al. [ 9] comparing the experiment 

with the theoretical prediction. The agreement is remarkable. It is worth pausing to 

reflect on just what has been demonstrated in this experiment. The experiment shows 

that a single massive particle can be prepared in a superposition of a position on the 

left and the right of the equilibrium position, and travelling in opposite directions in 

each case. 
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Fig. 12.5 The probability of finding the ion in the ground electronic state as a function of the phase 

difference, after Fig. 4 [ 9] 
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12.4 Trapping Multiple Ions 

In a linear ion trap such as depicted in Fig. 12.1, multiple ions may be trapped and 

cooled to the collective ground states of vibrational motion. Each ion has an equilib-

rium position, . x̄i , corresponding to a minimum in the total potential comprising the 

trap plus Coulomb potential for each ion. These equilibrium points are analogous to 

the atomic ions at the lattice points of a crystal, however unlike a crystal they are not 

equally spaced. In terms of a natural length scale given by the Coulomb potential for 

each ion, 

.l =
(

Z2e2 

4πǫ0 Mν2

)1/3 

, (12.26) 

and a coordinate system in which .z = 0 is in the middle of the trapped ions, James 

[ 10] has computed the equilibrium positions for different numbers of ions in a trap, 

see Table 12.1. 

If we expand the overall potential to second order in the small oscillations, . qn(t) 

(in dimensionless units), around the equilibrium points we obtain a simple coupled 

oscillator Hamiltonian of the form, 

.H = 
1 

2M 

N
∑

n=1 

p2 m + 
Mν2 

2 

N
∑

n,m=1 

Anmqnqm (12.27) 

where .pn is the canonical momentum to . qn . Explicit expressions for the coefficients 

.Anm are given in [ 10]. This hamiltonian represents a linear array of .N simple har-

monic oscillators with quadratic coupling. We can now make a change of variable 

to normal-mode coordinates (sometimes called collective or global coordinates). 

Table 12.1 Scaled equilibrium positions as a function of the number of trapped ions, from [ 10] 

N Scaled equilibrium positions 

2 –0.62996, 0.62996 

3 –1.0772, 1.0772 

4 –1.4368, –0.45438, 0.45438, 1.4368 

5 –1.7429, –0.8221, 0.8221, 1.7429 

6 –2.0123, –1.1361, –0.36992, 0.36992, 1.1361, 2.0123 

7 –2.2545, –14129, –0.68694, 0.68694, 1.4129, 2.2545 

8 –2.4758, –1.6621, –0.96701, –0.31802, 0.31802, 0.96701, 1.6621, 2.4758 

9 –2.6803, –1.8897, –1.2195, –0.59958, 0.59958, 1.2195, 1.8897, 2.6803 

10 –2.8708, –2.10003, –1.4504, –0.85378, –0.2821, 0.2821, 0.85378, 1.4504, 2.10003, 

2.8708 
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The transformation is chosen to diagonalise the real symmetric .N × N matrix with 

entries .Anm . The eigenvalue equation is 

. 

N
∑

n=1 

Anm β 
( p) 
n = μpβ 

( p) 
m ( p = 1, . . . ,  N ) (12.28) 

where the eigenvalues are .μp > 0 and the eigenvectors .β( p) are assumed to be 

numbered in order of increasing eigenvalue and are normalised so that 

. 

N
∑

p=1 

β 
( p) 
n β 

(p) 
m = δnm 

N
∑

n=1 

β 
(p) 
n β 

(q) 
n = δpq 

For example, when .N = 3 the eigenvalues are .μ1 = 1, μ2 = 3, μ3 = 29/5. The 

normal modes are then given in terms of the small oscillations as 

.Q p(t) = 

N
∑

m=1 

β 
( p) 
m qm (t) (12.29) 

Note the number of normal modes is equal to the number of ions. Of course we can 

equally well write the local coordinates .qn as 

.qm (t) = 

N
∑

p=1 

β 
( p) 
m Q p(t) (12.30) 

The first normal mode,.Q1 represents the centre of mass mode in which all the ions 

oscillate as if they were train wagons linked together. The second mode.Q2 represents 

a breathing mode in which each ion oscillates with an amplitude proportional to is 

displacement form the trap centre. In terms of the normal mode coordinates, .Q P and 

conjugate momenta .Pp, the hamiltonian is 

.H = 
1 

2M 

N
∑

p=1 

P2 
p + 

M 

2 

N
∑

p=1 

ν2 p Q
2 
p (12.31) 

where the frequencies of each of the normal modes is given by 

.νp = ν
√

μp (12.32) 
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This is the Hamiltonian of .N independent simple harmonic oscillators. Thus we 

introduce raising and lowering operators for each normal mode as 

.Q p =
√

�

2Mνp 

(bp + b† p) (12.33) 

.Pp = −i

√

�Mνp 

2 
(bp − b† p) (12.34) 

with .[bp, b† q ] =  δpq . 

Let us now assume that each ion in the trap can be addressed with a separate laser 

beam. For example in a linear ion trap for . 40Ca+ built in Innsbruck, the average 

spacing for . 4 ions was greater than .5 µm, which is above the diffraction limit for the 

laser beams. This spacing is also sufficient for the fluorescence (at readout) of each 

ion to be separately imaged. 

The interaction picture Hamiltonian describing how the . i’th ion is coupled to 

small oscillations around equilibrium is given by an obvious generalisation of (12.4) 

.H
(i ) 
I = �

�i 

2

(

σ 
(i) 
− 

e−ikL qi (t)e−i (ωA−ωL )t + h.c
)

(12.35) 

where we have taken the Rabi frequency for the . i’th ion to be .�i and .σ 
(i) 
± 

are the 

Pauli raising and lowering operators for the. i’th ion, while.qi (t) are local coordinates 

of the . i’th ion. If we now again assume that the Lamb-Dicke parameter for each ion 

is small, the interaction between the electronic and vibrational degree of freedom is 

.H
(i ) 
I = −i�

kL�i 

2

(

σ 
(i) 
− 

qi (t)e
−i(ωA−ωL )t − h.c

)

(12.36) 

This may be written in terms of the global modes as 

.H
(I ) 
I = −i�

η�i 

2
√
N 

N
∑

p=1 

s
( p) 
i

(

bpe
−i νp t + b† pe

iνp t
)

e−i (ωA−ωL )t σ 
(i) 
− 

− h.c (12.37) 

where .s
(i) 
p = 

√
N μ

−1/4 
p β 

( p) 
i . 

We now assume that we can tune the external laser to address only a single 

global vibrational mode (a particular normal mode), say the centre of mass mode 

at frequency, .μ1 = ν and .s
(1) 
i = 1 with .ωA − ωL = ν. Then we can ignore all the 

other modes and approximate the Hamiltonian as 

.H
(i) 
I = −i�

η�i 

2
√
N

(

σ 
(i ) 
+ 

b1 + σ 
(i) 
− 

b
† 
1

)

(12.38) 

This is the Cirac-Zoller Hamiltonian [ 1] and enables a scheme for quantum com-

puting using trapped ions. If there are many ions in the trap this may not be a good 
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approximation. In that case there are many normal modes and it is difficult to resolve 

individual normal mode frequencies as they become very closely spaced. To some 

extent this may be mitigated by cooling all the normal modes to their ground states. 

Further discussion of the validity of this approximation may be found in [ 10] and 

also [ 11]. 

12.5 Ion Trap Quantum Information Processing 

In 1995 Cirac and Zoller [ 1] proposed the first scheme for implementing quantum 

logic gates for trapped ions. In a quantum computer (see Chap. 15) information is 

stored in the states of a collection of two level systems, generically referred to as 

qubits. In the Cirac-Zoller (CZ) scheme, the qubits are the two-level electronic states 

of the trapped ions. Arbitrary transformations of the state of a single qubit are easily 

implemented by external laser fields. For universal computation we also need to have 

access to two qubit interactions. However the electronic states of different ions do 

not interact. CZ proposed to overcome this by using the collective vibrational mode 

of the ions to implement a virtual interaction between the qubits. The Cirac-Zoller 

scheme was first implemented by the Innsbruck group led by Blatt in 2003 [ 12]. They 

used two . 40Ca+ ions held in a linear trap and individually addressed by focussed 

laser beams. 

Other schemes have been proposed for implementing quantum gates in ion traps. 

Sørenson and Mølmer [ 13] developed a scheme which mitigates to some extent the 

deleterious effects of noise entering via the vibrational degree of freedom (eg patch 

potential heating) and implemented by the Wineland group in NIST [ 14]. A related 

scheme [ 15] uses far off-resonance optical dipole forces to implement a geometric 

phase gate, also first implemented by the NIST group [ 16]. 

The Mølmer-Sørenson gate uses a bichromatic laser field. The resulting Hamil-

tonian for two ions (see (12.12)) 

.Hms (t) =
�η�

2 
(beiδt + b†e−i δt )(σ 

(1) 
y + σ 

(2) 
y ) (12.39) 

where we have included an additional symmetric detuning. δ from the relevant normal 

mode frequency where.ωL1 − ωL2 = 2(ν + δ) is the difference between the frequen-

cies of the two laser driving fields. This Hamiltonian is explicitly time dependent in 

the interaction picture. In a time interval .0 < t < T we can write the unitary time 

evolution operator as a Dyson expansion 

.U (T ) = 1 + 

∞
∑

n=1

(−i

�

)n ∫ T 

0 

dtn

∫ tn 

0 

dtn−1 (12.40) 

. . .

∫ t2 

0 

dt1 Hms (tn) . . .  Hms (t2)Hms (t1) 
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If we assume that .δT ≫ 1 (dispersive regime) we can approximate this to lowest 

order in . T as 

.U (T ) = e− 
i
�
He f  f  T (12.41) 

where the effective Hamiltonian is 

.He f  f  = �
(η�)2 

2δ 
σ 

(1) 
y σ 

(2) 
y (12.42) 

up to an additive constant. This is an effective interaction between the internal states 

of the ions and will suffice to entangle these state given carrier frequency control of 

the state of each ion independently. 

There is a fundamental operation underlying the MS gate related to the idea of a 

geometric phase [ 15]. Suppose we use two consecutive fast pulses so that one ion 

at a time is driven bichromatically by very fast pulses. If the phase is adjusted from 

one pulse to the next we can implement 

.U1 = e−iκp(b+b†)σ 
(1) 
y (12.43) 

U2 = e−iκx (b−b†)σ 
(2) 
y 

These give conditional phase space displacements of the vibrational degree of free-

dom. If we use the commutation relation .[b, b†] =  1 we can show that 

.U2(κp)U1(−κx )U2(−κp)U1(κx ) = eiκx κpσ 
(1) 
y σ 

(2) 
y (12.44) 

The basic idea of a geometric phase gate is to use a sequence of such laser pulse 

sequences, applied to two ions, that move the vibrational degree of freedom of the 

ion through a loop in phase space that depends on the internal states of the two ions. 

Up to a single ion rotation unitary, this is an Ising-like unitary interaction between 

the two qubits. Note that there is no dependance on the vibrational degree of freedom 

at all. Inspection of the various phase space orbits that result for each choice of the 

joint eigenstates of .σ 
(1) 
y σ 

(2) 
y indicates why this is called a geometric phase gate. The 

effective conditional phase between the two qubits is proportional to the area of the 

rectangle, .χ = κx κp and the sign is given by the sense of rotation. It is clear that the 

actual shape of the closed orbit in phase space does not matter: only the area and 

sense of rotation matter. Effectively the Sørenson and Mølmer gate implements the 

phase space rotations by a time varying driving fields. 
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Problems 

12.1 A laser is tuned to the first read sideband transition for a single two level 

transition, .|g〉 ↔ |e〉, with a spontaneous emission rate of . γ . Ignoring all but the 

spontaneous emission decay channel, the master equation ( in the interaction picture) 

describing this system is 

. 

dρ 

dt  
= 

η�

2 
[aσ+ − a†σ−, ρ] +  γ D[σ−]ρ (12.45) 

where . η is the Lamb-Dicke parameter, . � is the Rabi frequency for the transition and 

.a, a† are the lowering and raising operators for the vibrational motion of the ion in 

the trap. Obtain equations of motion for .n̄ = 〈a†a〉, 〈a〉, 〈σ±〉, 〈σz〉 by factorising 
all higher order moments in the equations of motion. Assuming that the spontaneous 

emission rate is large enough so that the average polarisation .〈σ±〉 is stationary and 
the vibrational motion is slaved to the atomic motion, show that the rate of change 

of . n̄ is given by (12.14). 

12.2 A simple model for the heating of a trapped ion due to fluctuation potentials 

may be given in terms of the Hamiltonian 

.H (t) = �νa†a + �ǫ(t)(a + a†) (12.46) 

where .ǫ(t) is fluctuating force term with the following classical moments 

. ǭ = E(ǫ(t)) = 0 

G(τ ) = E(ǫ(t)ǫ(t + τ))  = 
D 

2γ 
e−γ |τ | 

Show that the heating rate is given by 

. 

d〈a†a〉
dt

= 
π 

2 
S(ν) (12.47) 

where the noise power spectrum for the fluctuating force is defined by 

.S(ω) = 
1 

2π

∫ ∞ 

−∞ 

e−i ωt G(τ ) (12.48) 

12.3 Show that if a harmonic oscillator in its ground state is subjected to a sequence 

of displacements in phase space that form a closed loop, the state is returned to the 

ground state up to an overall phase proportional to the area of the loop. 
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13Quantum Optics and Quantum 
Foundations 

Abstract 

The early days of quantum mechanics were characterised by debates over the 

applicability of established classical concepts, such as position and momentum, 

to the new formulation of mechanics. The issues became quite distinct in the 

protracted exchange between A. Einstein and N. Bohr, culminating in the paper 

of Einstein, Podolsky and Rosen (EPR) in 1935 (Einstein et al. in Phys. Rev. 

47:777, 1935, [ 1]). Thus the matter rested until 1964 when J.S. Bell (Physics 

1:105, 1964; Rev. Mod. Phys. 38:447, 1966, [ 4]) opened up the possibility of 

directly testing the consequences of the EPR premises. We will discuss the EPR 

argument and the analysis of Bell in the context of correlated photon states. 

13.1 The Einstein-Podolsky-Rosen (EPR) Argument 

The essential step in the EPR argument is to introduce entangled pure states of two 

degrees of freedom. In the original EPR argument these degrees of freedom were 

the mechanical states of two interacting particles but, following Reid [ 3], we will 

consider two interacting field modes, .a, b with canonical quadrature phase operators 

. X̂μ, Ŷν with .μ, ν = {a, b} that satisfy the canonical commutation relations 

.[ X̂μ, Ŷν] =  2i δμν (13.1) 

We will consider the state defined by 

.|�〉 =  e−i Ŷa X̂b/2|X = X0〉a|Y = Y0〉b (13.2) 

where .|X = X0〉a is an eigenstate of . X̂a with eigenvalue .X0 while .|Y = Y0〉b is an 
eigenstate of . Ŷb with eigenvalue . Y0. Note that this cannot be a physical state as it 

is a unitary transformation of a non normalisable eigenstate of the quadrature phase 

operators. We will consider a more physical version of this state later. 
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The state in (13.2) is in fact a simultaneous eigenstate of the operators . X̂a − X̂b 

and . Ŷa + Ŷb with eigenvalues .X0 and .Y0 respectively. Suppose one makes perfectly 

accurate measurements of . X̂a and . X̂b, using say homodyne detection. The measure-

ment results are random variables .xa, xb constrained so that in each and every trial 

.xa − xb = X0. Likewise, one can make perfectly accurate measurements of . Ŷa and 

. Ŷb, giving random variables .ya, yb constrained so that in each trial .ya + yb = Y0. 

In the case that we set .X0 = Y0 = 0 then we have that in each trial .xa = xb and 

.ya = −yb, a perfect correlation and anti correlation. 

The EPR argument rests on the correlations that result when homodyne measure-

ments are made on each of the two modes, . a and . b, using local detectors far from 

the source that produced the entangled state. The detectors may even be space like 

separated. In that case a measurement of . X̂a , with result . x , enables that observer 

to predict that the result of the measurement of . X̂b at the other detector, no matter 

how distant, will give the result . x . Similar statements apply for measurements of the 

.Y -quadratures. Thus, without in anyway interacting with the distant detector at . b, 

the observer at . a can predict with certainty the result of measurements at the distant 

detector, . b. This result is of course symmetric under interchange of the labels . a and 

. b. Note that there is no possibility of using this correlation to signal as the results of 

the measurements at each detector are completely random: you only see the perfect 

correlation when the results are brought together. 

EPR now make the following claim [ 1]: 

if without in any way disturbing the system, we can predict with certainty the value of 

a physical quantity, then there exists an element of physical reality corresponding to this 

quantity. 

EPR assume that there can be “no action at a distance” or special relativistic causal 

structure, so that, in the case that the two detectors are space-like separated, there 

can be no way for the action of measurements at one detector to influence the results 

of measurements at the other detector. The notion of "an element of physical reality” 

is a way of stating the classical ideal that systems have physical properties that take 

values independent of observers even if those values happen to be unknown due to 

ignorance. 

Should the observer at . a choose to measure the .X quadrature, they can predict 

with certainty the results of a measurement of the. X quadrature at the distant detector, 

. b. So there is an element of physical reality associated with this predicted result. The 

observer at . a could equally well have chosen to measure the . Y quadrature in which 

case they can predict, with certainty, the result of a. Y quadrature measurement at. b.We  

are forced to conclude that the values of two physical quantities, represented by non 

committing operators (. X̂b, Ŷb), take objective values even if they are not measured at 

. b. This appears to be in conflict with the uncertainty principle. EPR then concluded 

that quantum mechanics gives an incomplete description of the state of the field at the 

detectors as the quantum state of the two particles before the measurements are made 

does not determine the results of complementary quadrature phase measurements. 



13.2 Bell Inequalities and the Aspect Experiment 227 

Bohr’s response can be anticipated when we admit that, in a single trial, we can 

chose to measure either the .Xa quadrature or the .Ya quadrature but not both simulta-

neously. We can; (i) chose to measure the .Xa quadrature and predict with certainly 

the results of an .Xb quadrature measurement or (ii) we can chose to measure the . Ya 
quadrature and predict with certainly the results of an .Yb quadrature measurement. 

But (i) and (ii) are two different experiments or, as Bohr might say, complementary 

experiments. While this is undoubtedly true, it does little to mitigate the discomfort 

forced on us by the EPR argument. 

We will postpone further discussion of the quadrature phase operator version of 

the EPR argument to later in this chapter. We now turn to Bell’s contribution [ 4] 

which provides a sharp and unambiguous quantitative statement of the difference 

between classical and quantum correlations. Bell noted that, if as EPR claim, quan-

tum mechanics is incomplete how would the predictions change if the theory were 

supplemented by additional variables in order to restore the classical ideal of causal-

ity and locality? Using a precise mathematical formulation of local hidden variables, 

Bell showed that the predictions would then be incompatible with the predictions of 

quantum mechanics. 

13.2 Bell Inequalities and the Aspect Experiment 

Bell used a spin-half example of EPR-like correlations first presented by Bohm and 

Aharonov [ 5]. The first optical tests was performed by Freedman and Clauser [ 6] and 

Aspect, Dalibard and Roger [ 7, 8]. These experiments uses the polarisation degree 

of freedom of pairs of photons. Aspect et al. used a two-photon emission cascade 

between electronic states .(J = 0) → (J = 1) → (J = 0) in calcium-.40. The two 

photons are emitted in opposite directions (by conservation of linear momentum) with 

correlated polarisation states (by conservation of angular momentum). Each photon 

passes through separate polarisation analysers, emerging in either the horizontal 

(. +) channel, or the vertical channel (. −) of each analyser. Initially, assume that the 

horizontal polarisation is chosen to be orthogonal to the plane of the experiment and 

that both analysers are so aligned. However, we are free to rotate the polarisers in 

the plane orthogonal to the propagation direction of the photons. 

The Aspect experiment introduced the key features of many subsequent tests of 

Bell inequalities in quantum optics. There have since been hundreds of experiments 

and there is no doubt that quantum correlations violate the various forms of Bell-like 

inequalities that have been tested. Aspect, together with John Clauser and Anton 

Zeilinger were jointly awarded the Nobel prize in physics in 2022 for their pio-

neering work in these experiments. The basic experimental arrangement for these 

experiments in shown in Fig. 13.1. 

In an ideal experiment we use single-photon excitations of polarised spatio-

temporal modes. In most experiments this is done by post-selection but we postpone 

the discussion of this aspect of the experiments for now. A two photon state is gener-

ated, in a correlated, but distinguishable, spatio-temporal modes .ka, kb. The photons 

are entangled in their polarisation degree of freedom. For example the source could 

prepare, in every trial, the two-photon state, 



228 13 Quantum Optics and Quantum Foundations 

Fig. 13.1 A typical photonic test of a Bell inequality using polarisation entangled photons. . S is a 

source of two photons in a polarisation entangled state. They are directed towards two detectors, 

space-like separated from each other. Label each detector .A, B. Each detector requires a choice be 

made for the polarisation settings, labelled . x at A and . y at B. and has two output channels labelled 

.a = ±1 at A and .b = ±1 at B. These are the reflected and transmitted outputs of a polararising 

beam splitter 

.|�−〉 =  
1√
2 
(|HV 〉 − |V H〉) (13.3) 

where .|HV 〉 = |1〉kA,H ⊗ |1〉kB ,V and the subscripts label spatio-temporal modes 

with wave vectors .kA, kB and corresponding polarisation. The state .|�−〉 is one of 
the four orthogonal Bells states traditionally designated as 

.|�±〉 =  
1√
2 
(|HV 〉 ± |V H〉) (13.4) 

.|�±〉 =  
1√
2 
(|HH〉 ± |VV 〉) (13.5) 

A single trial corresponds to emitting a two-photon state and counting two pho-

tons; one at observer-a and one at observer-b. If for some reason two photons are 

not detected, that trial is discarded. As no detector is perfect this is likely to happen 

quite often. Let the measurement settings be chosen from a set of discrete rota-

tions .x ∈ {θA,1, θA,2, . . . θA,n} and .y ∈ {θB,1, θB,2, . . . θB,n}. Suppose the detector 
settings are the same, .x = y, that is to say, the same angle is chosen. We can rotate 

both angles jointly until we see a perfect anti-correlation at each output. When the 

photon at .A is detected at .a = 1 channel the photon at .B is detected at . b = −1 

channel, and vice versa. However from trail to trial the local measurement outcomes 

are a random binary numbers .±1. 

There is an important elision in the previous paragraph. In order to see the corre-

lation an observer must have access to both outcomes in each trial. In the lab this is 

obvious, as the experimentalist collects all the data from both detectors in each trial. 

However we should make this step explicit as we have assumed that each detector 



13.2 Bell Inequalities and the Aspect Experiment 229 

Fig. 13.2 A two-party Bell experiment with entangled photons. A source at the origin produces 

entangled photons pairs. The photons are in oppositely directed spatial modes. One goes to detector-

A and the other goes to detector-B. Both observers are space-lie separated. After each measurement 

the setting and the outcome are sent, over classical channels (double lines), to a checker, observer-c, 

who stores the data for each trial and constructs the appropriate correlation function to check a Bell 

inequality 

is space-like separated. This can easily be resolved by introducing a ‘checker’— 

labelled . c—that receives the data (setting and outcome at each detector) from each 

observer in a trial in the future light cone of the detection events. For convenience 

we will suppose the verifier is at the same place as the source. Note that the verifier is 

getting results of experiments and this is purely classical information. A space-time 

diagram for the experiment is shown in Fig. 13.2. Note that observer-c is at rest in the 

frame of the source and thus can easily synchronise emission and detection events 

to ensure that data is collected from each trial. 

So far there is nothing unusual in this experiment. We can easily arrange for 

a classical source to produce perfect correlations of this kind. The real quantum 

surprise is only found when observer-A and observer-B make different choices for 

the measurement settings .x, y. This was Bell’s insight. It remains the case that the 

outcome at each observer is random, but now c will find a non classical statistical 

feature. 

The protocol is as follows. 

• All observers agree that only two measurement settings will be used . a, b ∈ 

{θ1, θ2}. 
• In each trial, observers . a and . b each toss a coin to determine which measurement 

setting to use. 
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• Data analysis: when the checker gets the classical information about the setting and 

the result from each observer they compute the product .xa,i × xb, j (.i , j ∈ {1, 2}) 
for every trial and then average over all trials to get .E(i , j) ≡ E[xa,i × xb, j ]. 

• Given enough trials, and measurement settings, the checker calculates the corre-

lation function. 

. S = |E(1, 1) + E(1, 2) + E(2, 1) − E(2, 2)| 

This correlation is the CHSH correlation function. 

If we make some assumptions on how the measurement outcomes should be 

correlated we can prove the CHSH theorem. The assumptions capture EPR’s concept 

of local realism. 

Realism—measurement outcomes are determined by properties of the particles 

that exist prior to and independent of the experimental situation. 

Locality—measurement outcomes obtained at one location are independent of 

any measurements, or actions, performed at a space-like separation. 

Freedom of Choice—Any process that leads to the choice of measurements 

made by observers A and B, is completely independent of other processes in the 

experiment. 

The assumption of realism and locality can be expressed in terms of a unknown 

classical quantity. λ, possibly unknown with probability distribution.p(λ). We assume 

that 

.P(a, b|x, y) =
∫

λ 

p(λ)P(a|x, λ)P(b|y, λ) (13.6) 

This is often glossed as; correlations must be explained by local common causes. 

We stress that there are no spacetime labels included in this condition. It is meant to 

capture our intuition about causes in such situations but it is far more general. 

Given these assumptions, correlation function .E( Ai , B j ), .i , j = 1, 2 between 

Alice and Bob’s measurement outcomes, labelled respectively as.Ai and.B j , satisfies 

the following inequality, 

.S = |E(A1, B1) + E(A1, B2) + E( A2, B1) − E(A2, B2)| ≤ 2. (13.7) 

The quantum theory predicts a very different result. The joint probability of mea-

surement outcomes .P(a, b|x, y) is determined by a joint POVM 

.P(a, b|x, y) = tr[ρ Êx (a) ⊗ Êy(b)] (13.8) 

where . ρ is the joint state prepared by the source. The basic POVM for polarisation 

is 

. Êx (a)] =  
1 

2

(

1 + ax · σ̂
)

a = ±1 (13.9) 
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where .U (x) is an arbitrary unitary in the two dimensional Hilbert space of polarisa-

tion. The probability distribution for a single mode is 

.P(a|x) = tr[ Êx (a)ρ] =  
1 

2

(

1 + atr[x · σ̂ ρ]
)

(13.10) 

where . n is a unit vector and .σ̂ = (σx , σy, σz) with the Pauli matrices defined 

. σz = |H〉〈H − |V 〉〈V | , σy = −i (|H〉〈V | − |V 〉〈H |) ,  σx = |H〉〈V + |V 〉〈H | . 
(13.11) 

Then the average is 

.E[ j] =  P(1|x j ) − P(−1|x j ) = tr[x j · σ̂ ρ] (13.12) 

We can show that for the state in (13.3) 

.E(i , j ) = −xi · y j = −  cos θi j (13.13) 

where .θi j  is the angle between .xi and . yi . There exists choices for directions .xi and 

. yi such that .S = 2
√
2, violating the Bell inequality. This is the maximum violation 

possible in quantum mechanics [ 9]. 

13.3 Description of the Aspect Experiment 

We can use the generalised P function methods to describe the Apsect polarisation 

test of the Bell inequality. We follow the treatment of Reid and Walls [ 10]. Let 

.ai (bi ) be the annihilation operator for the horizontally (.i = +) or vertically (.i = −) 

polarised mode for the field travelling to analyser A or analyser B. The measurements 

are made using photo-detection. As there are two spatial modes each of which has 

two polarisation modes, we need a four mode description. 

The state of the two photons may be written as 

.|�−〉 =  
1√
2 
(a

† 
+b

† 
− 

− a
† 
−b

† 
+)|0〉, (13.14) 

where.|0〉 is the vacuum state. Using the notation.|n1, n2, n3, n4〉 to denote.n1 photons 
in mode.a+,.n2 photons in mode.a−,.n3 photons in mode.b+, and.n4 photons in mode 

.b−, the state may be expressed as 

.|�〉 =  
1√
2 
(|1, 0, 0, 1〉 − |0, 1, 1, 0〉). (13.15) 

If the photon in analyser A is detected in the (. +) channel, the state of the photon 

detected in analyser B must be polarised in the (. −) direction. We are free to measure 

the polarisation in any direction by rotating the analysers through angles .θ1 and . θ2, 
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for detector A and B, respectively. The mode detected in this case are orthogonal 

transformations of the modes .ai and . bi : 

.ci = ai cos θi + bi sin θi , (13.16) 

.di = −ai sin θi + bi cos θi , (13.17) 

.c j = a j cos θ j + b j sin θ j , (13.18) 

.d j = −a j sin θ j + b j cos θ j . (13.19) 

The detectors placed after the polarisers measure the intensities .〈I ± 

1 〉 and . 〈I ± 

2 〉
while the correlators measure .〈I ± 

1 I 
± 

2 〉, etc. Clearly these moments depend on . θ and 

. θ2. Let us further suppose that in a complete theory these functions also depend on 

the variable . λ which remains hidden from direct determination and for which only 

a statistical description is available. This variable is distributed according to some 

density .ρ(λ). In general, we may then write 

.〈I ± 

1 I 
± 

2 〉θ1θ2 =
∫

ρ(λ)I ± 

1 (λ, θ1, θ2)I 
± 

2 (λ, θ1, θ2)dλ, (13.20) 

where .I + 

j denotes the expected intensity at detector . j given a value for . λ, namely 

.I + 

j (λ, θ j , θ2) =
∫

I + 

j (λ, θ1, θ2)ρ(λ)dλ. (13.21) 

It is reasonable to assume, as in Bell’s approach, that for a given value of . λ the 

results at 1 cannot depend on the angle . θ chosen at 2 (and conversely). This is the 

‘locality assumption’, it is formally represented by 

.I ± 

1 (λ, θ1, θ2) = I ± 

1 (λ, θ1), (13.22) 

.I ± 

2 (λ, θ1, θ2) = I ± 

2 (λ, θ2). (13.23) 

Consider the following correlation functions: 

.E(θ1, θ2) =
〈(I + 

1 − I − 

1 )(I 
+ 

2 − I − 

2 )〉
〈(I + 

1 + I − 

1 )(I 
+ 

2 + I − 

2 )〉
. (13.24) 

In terms of the detected mode operators this may be written in the form 

.E(θ1, θ2) =
〈 :  (c

† 
+c+ − c

† 
−c−)(d

† 
+d+ − d

† 
−d−) : 〉

〈 :  (c
† 
+c+ + c

† 
−c−)(d

† 
+d+ + d

† 
−d−) : 〉

(13.25) 
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where . : denotes normal ordering. Assuming a local hidden variable theory we may 

write 

.E(θ1, θ2) = N −1

∫

f (λ)S1(λ, θ1)S2(λ, θ2)dλ, (13.26) 

where 

.S1(λ, θ1) = 
I + 

1 (λ, θ1) − I − 

1 (λ, θ1) 

I1(λ) 
, (13.27) 

.S2(λ, θ2) = 
I + 

2 (λ, θ2) − I − 

2 (λ, θ2) 

I2(λ) 
. (13.28) 

with 

. f (λ) = ρ(λ)I1(λ)I2(λ), (13.29) 

.I1(λ) = I + 

1 (λ, θ1) + I − 

1 (λ, θ1), (13.30) 

.I2(λ) = I + 

2 (λ, θ2) + I − 

2 (λ, θ2). (13.31) 

Equations (13.30, 13.31) correspond to the intensity of light measured at A or B with 

the polarisers removed. The normalisation .N is 

.N =
∫

f (λ)dλ. (13.32) 

The functions .S1(λ, θ1) and .S2(λ, θ2) are bounded by unity: 

.|S1(λ, θ1)| ≤  1, (13.33) 

.|S2(λ, θ2)| ≤  1. (13.34) 

To obtain a testable statistical quantity we need to consider how . E(θ1, θ2) 

changes as the orientation of the polarisers are changed. With this in mind, con-

sider .E(θ1, θ2) − E(θ1, θ
′
2). This quantity may be expressed as 

. E(θ1, θ2) − E(θ1, θ
′
2) = N −1

∫

f (λ)[S1(λ, θ1)S2(λ, θ2) − S1(λ, θ1)S2(λ, θ ′
2)]dλ. 

(13.35) 

Then using (13.17), (13.18) 

. |E(θ1, θ2) − E(θ1, θ
′
2)| ≤  N −1

∫

f (λ)|S1(λ, θ1)||S2(λ, θ2) − S2(λ, θ ′
2)|dλ 

(13.36) 

. = N −1

∫

f (λ)[1 · |S2(λ, θ2) − S2(λ, θ ′
2)|]dλ (13.37) 
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. = 2 + [E(θ1, θ2) + E(θ ′
1, θ2)]. (13.38) 

Finally, we obtain the Bell inequality 

.|E(θ1, θ2) + E(θ ′
1, θ2) + E(θ1, θ

′
2) − E(θ ′

1, θ
′
2)| ≤  2, (13.39) 

This is the same Clauser-Horne-Shimony-Holt (CHSH) inequality in (13.7). We 

know the two-photon entangled state will violate the inequality. The existence of a 

Glauber-Sudarshan P function excludes a violation. 

13.4 Closing the Loop Holes 

Did the original Aspect experiment rule out local hidden variables? A positive 

response is open to two objections. Firstly, the two measurements on each of a 

pair of correlated photons were not space-like separated, the “locality loop-hole”. 

Secondly a very large number of trials do not yield a result due to detector ineffi-

ciencies, the “detection loop-hole”. In that case one could imagine that the events 

that are registered do not give a fair-sampling of the entangled states; somehow the 

measurement settings might influence which events are recorded. The second Aspect 

experiment [ 8] went some way to closing the first loop hole. 

Closing both the detection and locality loopholes was achieved using a very 

different kind of source based on NV diamond single photon emitters. In addition to 

using very efficient single photon detectors, the experiment used a novel ‘heralded’ 

source of entanglement of pairs of electron spins in physically distinct diamond 

crystals. This is closer to the original Bohm-Aharonov-Bell formulation of EPR 

correlations. We will describe this experiment in some detail. 

Nitrogen vacancy centres in diamond exhibit good single photon emission depend-

ing on the electron spin of the vacancy at low temperatures [ 14]. The level structure 

and optical transitions are depicted in Fig. 13.3. The ground state is a spin-triplet split 

by a crystal field into spin states.ms = 0 and a degenerate doublet.ms = ±1 separated 

by .2.88 GHz. If necessary, a Zeeman field can be included to lift the degeneracy of 

the .ms = ±1 ground states. 

There are two optical transitions, one labelled .Ex between the .m = 0 ground 

state and an .ms = 0 excited state and another labelled .A1 between .ms = ±1 and 

a mostly .m = ±1 excited state. When one of these transitions is resonantly driven, 

the fluorescence decays due to weak transitions into the ground state of the opposite 

excitation path. This mechanism enables optical pumping of either the.ms = 0 ground 

state or the .ms = ±1 ground state. This feature enables high fidelity electron spin 

initialisation. The spin dependent transitions .A1, Ex also enable ‘single-shot’ spin-

dependent optical readout of the triplet ground state through observation of the strong 

spin-resolved fluorescence on these transitions. In Robledo et al. [ 15] the fidelity of 

preparation plus readout of the.ms = 0 state was.99.7% while for the.ms = ±1 states 

it was .99.2%. 

The key feature of the Hanson experiment is the preparation of an initial entangled 

state of two NV centres in distinct diamond samples, separated by .1280 m, using 
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Fig. 13.3 The level structure 

of the electronic states of a 

nitrogen vacancy centre in 

diamond and the associated 

optical transitions 

a variation [ 16] of the scheme of Barrett and Kok [ 17]. This is based on a non-

deterministic but heralded detection of single single photons emitted by one or the 

other of the NV centres. The basic idea is depicted in Fig. 13.4. A single photon is 

emitted from one of two sources located at . A and . B, following an optical excitation 

pulse, and is detected at. C after passing though a beam splitter that erases information 

on which source it came from. In the experiment, the NV centre is located in a surface 

fabricated confocal microscope so that the emission can be effectively coupled into 

multi mode fibres. The fibres coming from. A and. B are directed towards a fibre beam 

splitter (FBS). The photons in the output ports of the FBS are detected and recorded. 

The electronic spin state of each NV centre is controlled using microwave pulses 

applied to on-chip wires. In this way we can prepare the spin state of each NV centre 

independently. This is essential as it is possible only to readout the spin state directly 

in the Z-basis. However we can readout in other bases by first unitary rotating the 

spin state with microwave pulses. In this way we can implement the two rotation 

angles at each emitter prior to a spin readout in the Z-basis. 

Fig. 13.4 The Barrett-Kok scheme for entangling two distant spins 
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We first describe the state preparation step. Label the spin states in each emitter as 

.|ms = 0〉 = | ↑〉 and.|ms = −1〉 = | ↓〉. Assume that, at.t = 0, each of the emitters is 

prepared in the superposition state .|+〉 = (| ↑〉 +  | ↓〉)/
√
2 by optical pumping into 

.ms = 0 followed by a microwave pulse on the .0 ↔ −1 transition. Each NV centre 

is now excited on the .Ex transition by a short laser pulse. Spontaneous emission 

on this transition rapidly produces the entangled state .(| ↑, 1〉 + |  ↓, 0〉)/
√
2 as the 

spin state .| ↓〉 is not coupled to this transition. This neglects a very small amplitude 

that the state has a component in the excited states of the .Ex transition but this is 

exponentially small. Given that we ultimately post-select on the basis of counting 

a single photon this amplitude does not contribute in any case. The state of both 

emitters a short time after excitation can then be written as. 

. |�〉 =  
1 

2 
(| ↑, 1〉A ⊗ |  ↑, 1〉B + |  ↓, 0〉A ⊗ |  ↑, 1〉B + |  ↑, 1〉A ⊗ |  ↓, 0〉B + |  ↓, 0〉A ⊗ |  ↓, 0〉B ) 

(13.40) 

We now direct the emitted photons into optical fibres and through a fibre beam-

splitter. If the photons emitted from each NV centre are identical this will erase 

information on which source emitted a single photon. If we now ask for the con-

ditional state of the emitters give that we detect one and only one photon after the 

beam-splitter, the conditional state is of the form 

.|�(1)〉 =  
1√
2 
(| ↑〉A ⊗ |  ↓〉B ± eiφ | ↓〉A ⊗ |  ↑〉B ) (13.41) 

and the phase . φ depends on optical path lengths in the detection pathways. 

This makes the unreasonable assumption that the detectors are perfect and no 

photon is missed. In the case of imperfect detection a single photon detection could 

also result from an amplitude for the .| ↑, 1〉A ⊗ |  ↑, 1〉B state. To fix this Bernien 
et al. [ 16] used an ingenious scheme in which, after a single detection event, the states 

.| ↑〉, | ↓〉, are flipped with microwave pulses and each NV optically excited for a 

second time. This induces .| ↑〉A ⊗ |  ↑〉B → | ↓〉A ⊗ |  ↓〉B which is now decoupled 
from the optical transition and subsequent excitation cannot result in a spontaneous 

emitted photon. However the components .| ↑〉A ⊗ |  ↓〉B , | ↓〉A ⊗ |  ↑〉B do emit a 

photon. If we detect a single photon in both excitation rounds (and the emitted 

photons are again identical) the conditional state is 

.|�(1,1)〉 =  
1√
2 
(| ↑〉A ⊗ |  ↓〉B ± |  ↓〉A ⊗ |  ↑〉B ) (13.42) 

The relative phase. φ is converted into a global phase by the second round of excitation. 

The sign in this superposition depends on whether the same detector or different 

detectors recorded an event in the both rounds. At the end of the protocol we have an 

entangled spin state in NV centres separated by a large distance. Of course this is a 

non deterministic protocol. The probability for a success in each trial preparation is 
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of the order of .10−9 corresponding to one heralded entangled state generation every 

hour. 

The test of the Bell inequality can now begin. The local spin readout is done using 

resonant driving on a spin-dependent cycling transition (similar to the readout of the 

electronic state of a trapped ion discussed in Sect. 12.2). The NV emits many photons 

when it is in the .ms = 0 state and emits no photons when it is in the .ms = −1 state. 

Photon emission is labelled as a .+1 result while no photon mission is labelled as 

a .−1 result. This is a .Z basis measurement. In order to readout in a rotated basis 

we use the ability to rotate the spin states using microwave pulses followed by a 

Z-basis measurement. The rotated basis measurements are chosen using fast random 

number generation. It takes roughy .490 ns to chose the basis and ready for readout 

which takes a further .37 µs. As the NV samples are separated by .1280 m space-like 

separation of events at A and B allow a time window of .4.27 µs. This leaves .90ns 

for any additional uncertainties. The fidelity of preparation and readout is as good 

as .97%. 

The experiment took .245 trials during a total measurement time of .220 h in a  

period of 18 days to yield the CHSH correlation .S = 2.42 ± 0.20. This is a clear 

violation of the CHSH Bell inequality with both the detection loophole and locality 

loophole confidently closed. 

13.5 EPR Correlations 

We return now to a discussion of experiments to test the original EPR scheme and the 

related idea of steering. As we noted above, the original EPR state is not a physical 

state. Instead we use a physical state that can approach the ideal state in a suitable 

limit. Reid [ 18] proposed to use the quadrature phase correlations in the two modes 

of non degenerate parametric down conversion. 

In Chap. 4 we discussed to what extent parametric down conversion can produce 

a two mode squeezed state. In the photon number basis this is an entangled state of 

the form 

.|�〉ab =
√

1 − λ2 
∞
∑

n=0 

λn|n〉a ⊗ |n〉b (13.43) 

It can be written as a unitary transformation of the two-mode vacuum state . |�〉ab = 

er(a
†b†−ab)|0〉with .λ = tanh r . In the limit this approaches the EPR state. To see this 

we write the state in the basis of the quadrature phase operators . X̂a, X̂b; 

.�(xa, xb) = (2π)−1/2 exp

[

− 
e2r (xa − xb)

2 

8
− 

e−2r (xa + xb)
2 

8

]

(13.44) 

Using the Fourier transform, the state in the basis of the quadrature phase operators 

. Ŷa, Ŷb is 

.�(ya, yb) = (2π)−1/2 exp

[

− 
e2r (ya + yb)

2 

8
− 

e−2r (ya − yb)
2 

8

]

(13.45) 
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Fig. 13.5 A scheme for testing the EPR proposal using non ideal quadrature phase measurements 

on one mode of a two-mode squeezed state. A random binary number determines the choice of 

which quadrature phase amplitude is measured at . a. What state does the observer at . a assign for . b, 

conditional on the results .xa or . ya? 

This state thus gives the joint quadrature phase operator variances 

.Var( X̂a − X̂b) = Var( ̂Ya + Ŷb) = 2e−2r (13.46) 

In the limit.r → ∞ this approaches the perfect correlation of the EPR state. The state 

in (13.44) is clearly Gaussian in both quadrature amplitudes . X̂α and . Ŷα so we only 

need to give the means and co-variance matrix of the state to completely characterise 

it. (Strictly speaking there is also a global phase factor but this will play no role in 

what follows.) 

We now consider an experiment, depicted in Fig. 13.5, in which a non ideal 

measurement of a quadrature phase operator is made on one mode of the two mode 

state, say mode-. a. By non ideal we mean that this measurement is not perfectly 

accurate. In reality this corresponds to a homodyne measurement. We allow for some 

measurement accuracy to provide greater flexibility in describing an experiment. The 

question we wish to answer is: what conditional state does the observer at . a assign 

to the state at . b conditioned on the results of the measurement? We use a random 

binary number to choose which of the two canonically conjugate quadrature phase 

amplitudes to measure at . a. 

To answer this question we need to be able to calculate the conditional reduced 

state of mode-. b given particular measurement results at . a. We will first treat the 

case of an . X̂a quadrature amplitude measurement of mode-. a. The measurement is 

completely described by the measurement operator 

. ϒ̂�(xa) = (2π�)−1/4 exp[−( X̂a − xa)
2/(4�)] (13.47) 

The statistics of measurement outcomes is 

.P(xa) = Trab

[

ϒ̂
†
�(xa) ϒ̂�(xa)|�〉ab〈�|

]

(13.48) 
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The conditional state of mode-. b, given the result .xa for the measurement on mode-. a, 

is 

.ρ 
(xa ) 
b = [P(xa)]−1Tra

[

ϒ̂�(xa)|�〉ab〈�| ϒ̂†
�(xa)

]

(13.49) 

The conditional marginal distribution for the . X̂b quadrature amplitude is defined as 

.P(xb|xa) = 〈xb|ρ 
(xa ) 
b |xb〉 (13.50) 

In Exercise 13.3 you can show that the distribution of measurement outcomes, 

.P(xa) is a gaussian with variance with mean and variance given by 

.E(xa) = 0 (13.51) 

.Var(xa) = � + cosh 2r (13.52) 

Thus the mean of the measurement outcomes is zero and so equal to the mean of . xa 
in the prior quantum state, while the variance in the measurement outcome is the sum 

of the error in the measurement and the prior variance in variable . xa . In the limit of 

perfectly accurate measurements, .� → 0, we see that the statistics of measurement 

outcomes mirrors the marginal quantum statistics of ideal measurements of . X̂a on 

the state .|�〉ab. 
In Exercise 13.3 you can show that the conditional distribution .P(xb|xa) is also 

a gaussian with conditional mean and conditional variance give by 

.E(xb|xa) = xa tanh 2r (σ/�) (13.53) 

.Var(xb|xa) = δ (13.54) 

where 

.σ =
(

1

�
+ 1 

cosh 2r

)−1 

(13.55) 

.δ = 
1 + � cosh 2r

� + cosh 2r 
. (13.56) 

Note that, while the conditional mean of the state at mode-b is a random variable, 

the conditional variance is deterministic. In the limit of perfect correlations, . r → ∞  

we see that .σ = � and the conditional mean of mode-. b is equal to .xa while . δ = �

in which case the variance for the unmeasured quadrature at mode-. b is reduced to 

zero in the limit of perfectly accurate measurements on mode-. a. This is the expected 

perfect correlation of the EPR state. In general the observer at . a can now define an 

inferred value for the . X̂b quarter amplitude with uncertainty given by 

.�2 
in  f  (xb) = δ (13.57) 
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A similar calculation can be done for the case that we choose to measure the . Ŷa 
quadrature amplitude measurement of mode-. a. This requires a different measure-

ment set up to that used to measure the . X̂a quadrature amplitude. We will assume 

that is is described by the measurement operator 

. �̂�(ya) = (2π�)−1/4 exp[−( ̂Ya − ya)
2/(4�)] (13.58) 

Note that . ϒ̂�(xa) and . �̂�(ya) do not commute, a reflection of the fact that these 

describe different and complimentary measurements. We could have chosen the 

uncertainty in the .Y quadrature measurements to be different for that for the . X 

quadrature measurements but this does not make a fundamental change to the argu-

ment. 

In this case the conditional mean and variance of the mode-. b state is given by 

.E(yb|ya) = −y tanh 2r(σ/�) (13.59) 

.Var(yb|ya) = δ (13.60) 

Note the anti-correlation expected for the conditional mean in the limit of perfect 

correlations and ideal measurements. In general the observer at . a can now define an 

inferred value for the . Ŷb quarter amplitude with uncertainty given by 

.�2 
in  f  (yb) = δ (13.61) 

Following the logic of the EPR argument we now note that 

.�in  f  (xb)�in  f  (yb) = δ (13.62) 

The right hand side will be less than unity for any non zero correlation provided 

.δ <  1, that is to say, when the measurement accuracy is better than the vacuum state 

uncertainly in the relevant quadrature amplitude. This looks like a violation of the 

uncertainty principle and EPR concluded that this result indicates the incompleteness 

of quantum mechanics. Bohr’s response might be simply to point out that the two 

factors in the right hand side of (13.62) are obtained under distinct and complimentary 

experimental arrangements. The quantum uncertainty principle has nothing to say 

about such a product as each factor refers to a different conditional quantum state. 

Despite this we can define the EPR criterion as 

.�in  f  (xb)�in  f  (yb) <  1 (13.63) 

The previous analysis assumes that the conditional state is pure. In an actual exper-

iment based on homodyne detection one needs to account for the non unit quantum 

efficiency of the photo-current detectors at mode-. a. This requires us to consider non 

pure conditional states. Nonetheless, the resulting homodyne distributions remain 

Gaussian. Reid et al. [ 19] show that for this case, 

.�in  f  (xb)�in  f  (yb) = 
1 + cosh 2r ((1 − ηa)/ηa) 

cosh 2r + ((1 − ηa)/ηa) 
(13.64) 
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This has the same form as the pure state analysis with a measurement uncertainty 

.� = ((1 − ηa)/ηa). We thus see that the EPR criterion will be satisfied when . ηa > 

0.5. 

The two-mode squeezed state is a pure state and is entangled for any value of 

. r . In an experiment the state produced is never pure and we need to consider the 

relationship between the degree of squeezing, purity and entanglement. It is possible 

for a mixed Gaussian bi partite state to exhibit entanglement without satisfying the 

EPR criterion. The EPR criterion is a stronger test of non locality than entanglement 

itself [ 19]. 

The first experiment to test the EPR criterion was performed by Ou et al. in 1992 

[ 20]. The two-mode squeezed states were produced using a non degenerate optical 

parametric oscillator. Bowen et al. [ 21] used two independent optical parametric 

amplifiers produced single mode squeeze states that were mixed with a .π/2 phase 

difference on a .50/50 beam splitter to produce a two-mode squeezed state (see 

Sect. 1.5). The two output beams from the beam splitter were then directed towards 

two separate homodyne detection devices with the ability to change the detected 

quadrature amplitude independently at each device. A polarising beam splitter is 

introduced into each arm to enable the loss in each mode of the bi partite entangled 

state to be varied. In this way both the inseparability and EPR criterion can be 

investigated. The optimum value for the EPR criterion was achieved when the product 

of the inferred variances reached .0.58 ± 0.02. 

13.6 Quantum Steering 

In 1935 Schrödinger introduced a new aspect to the EPR argument which has come 

to be known as quantum steering [ 22]. The concept again relies on the way in which 

different measurements on one component of a bipartite entangled state can lead to 

different conditional quantum states for the other component. It appears as if one can 

steer the conditional state at a remote location by making different choices for the 

measurements. Wiseman, Jones and Doherty (WJD) [ 23] introduced a quantitative 

formulation of quantum steering by defining it as a quantum information task capable 

of experimental tests, for example [ 26]. WJD showed that quantum steering is a 

distinct nonlocal property of some bipartite quantum states that differs from Bell 

nonlocality and nonseparability. 

The quantum information task introduced by WJD is an asymmetric communi-

cation task involving two parties, Alice (. a) and Bob (. b). Alice has control over an 

optical source and can send quantum states to Bob over a quantum channel (e.g. 

a single mode optical fibre) as well as classical information over a classical chan-

nel. Alice’s source might produce two-mode entangled states, one mode of which is 

directed through the quantum channel to Bob’s detectors, and the classical informa-

tion she can send could be the results of local measurements, just as in the standard 

Bell correlation experiments. 

Alice however may not have a genuine source of entangled two-mode states but is 

trying to convince Bob she does by sending one component of a separable state to Bob 



242 13 Quantum Optics and Quantum Foundations 

together with limited classical information about that state, for example, it may be 

classical information masquerading as the result of a local homodyne measurement 

result. Putting it another way, can Bob verify Alice’s honesty by computing correla-

tions between the classical information sent to him by Alice and the results of local 

measurements at his detectors? Can Bob discover that the states he receives are sim-

ply unknown (or hidden) separable states correlated with Alice’s results or genuine 

bi-partite entangled states? WJD derived an inequality that Bob can construct from 

his data and the data sent to him by Alice that enables him to determine the answer 

to this question and verify that Alice is indeed sending him a non-separable state. 

What is surprising is that the class of such steerable states are a subset of all possible 

non-separable states but not all steerable states violate a Bell inequality. This intro-

duces a hierarchy of entangled states: steerability is stronger than nonseparability 

and weaker than Bell nonlocality. 

The significance of quantum steering for other quantum communication protocols 

arises from Bob’s ability to verify Alice’s claim even with a complete lack of trust 

in anything that happens in Alice’s laboratory. It is particularly relevant for device 

independent protocols. 

The first experimental test of steering using qubit states was performed by 

Saunders et al. [ 27]. Using polarisation photonic qubits to implement Werner states, 

they demonstrated that steerable states were a strict superset of the set of states 

that could violate a Bell inequality. A key feature of the steering communication 

protocol is its asymmetry; either Alice or Bob can be untrusted but not both. A 

fully asymmetric steering protocol was first demonstrated by Wollmann et al. [ 25]. 

This experiment used polarization photonic Bell states generated using a heralding 

method via spontaneous parametric down-conversion (SPDC) source. This closes 

the detection loophole. These states were then used to prepare Werner states. By 

introducing loss into one arm, say Bob’s, Wollmann et al. were able to demonstrate 

the asymmetry of the protocol. The resulting loss of information in Bob’ s arm makes 

him unable to steer the state for Alice. 

Problems 

13.1 A two qubit system is prepared in the pure state 

. |�−〉 =  
1√
2 
(|01〉 − |10〉) 

A CHSH experiment is performed with two settings for each party. Alice mea-

sures .A1 = σz and .A2 = σx . Bob measures .B1 = −(cos θσz + sin θσx ) and . B2 = 

cos θσz − sin θσx ). Calculate the correlation function 

. C = |〈A1 B1〉 + 〈A2 B1〉 + 〈A2 B2〉 − 〈A1 B2〉| 

as a function of . θ . At what value of . θ is there a maximal violation of the CHSH 

inequality? 
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13.2 An experiment attempts to make the .|�−〉 maximally entanged state of two 

qubits. However, due to imperfections in the experiment, it produces that state with 

probability . ǫ and otherwise produces one of the four Bell states at random. 

(a) Show that this state may be written as 

. ǫ|�−〉〈�−| +  (1 − ǫ) 
I 

4 

where . I is the .4 × 4 identity matrix. 

(b) Show that this state is entangled for .ǫ >  1/3. 

13.3 A two-mode system is prepared in the squeezed state 

.|�〉ab =
√

1 − λ2 
∞
∑

n=0 

λn|n〉a ⊗ |n〉b (13.65) 

and a measurement of the . X̂a quadrature is made described by the Krauss operator 

. ϒ̂�(xa) = (2π�)−1/4 exp[−( X̂a − xa)
2/(4�)] (13.66) 

where .xa is the measured result. Calculate the conditional and unconditional state 

and the corresponding mean and variance of . X̂a . 
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14Quantum Optical Communication 

Abstract 

Quantum information theory is the study of communication and information pro-

cessing tasks using physical systems that obey the rules of quantum theory. Infor-

mation theory was largely the creation of Claude Shannon working at Bell labo-

ratories over fifty years ago. Shannon produced an elegant mathematical theory 

for information encoding, transmission and decoding in the presence of noise. In 

the early 1980’s a number of pioneers including, Holevo, Schumachor, Brassard, 

Ekert and Bennett, began to re-consider these issues in the light of quantum noise. 

In this chapter we will consider some of these developments including quantum 

cryptography and quantum teleportation. 

14.1 Introduction 

In classical information theory, the elementary unit of communication and informa-

tion processing is the binary digit, or bit, which can take the mutually exclusive values 

0 or 1. All communication and information processing can be reduced to operations 

on strings of binary digits. In 1946 Shannon [ 1] established a number of theorems 

for such operations and founded the subject of information theory [ 2]. Somewhat 

paradoxically, the key for this development lay in asking how much information is 

gained when the result of a random binary choice is known. Consider, for example, 

a fair coin toss. If we encode a head as 1 and a tail as 0, it is clear that to record the 

result of a single coin toss we require one binary digit. When the result is known 

we have gained one bit of information. If we toss N coins there are .2N possible 

outcomes, yet to record a single outcome requires only .N bits. It would appear from 

this that an intuitive definition for a numerical measure of information is the loga-

rithm of the number of possible alternative ways a given outcome can be realised. 

If all outcomes are equally likely, as in the case of a fair coin toss of N coins, the 

probability of each outcome is.2−N . The information content of a the. i ’th outcome is 

then .H = − log2 pi where .pi = 2−N is the probability of the outcome. The depen-
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dence of the information measure on the logarithm of the probability ensures that 

information is additive as our intuition with coin tosses would suggest. In general all 

outcomes are not equally likely. In that case we are led to define the average infor-

mation of an outcome as .H = −
∑

i pi log2 pi We choose to define our logarithms 

base two as this leads to a measure of information in bits, which appears more natural 

in this context. 

14.1.1 The Qubit 

Quantum mechanics indicates that, at its most fundamental level, the physical world 

is irreducibly random. Given complete knowledge of the state of a physical system 

(that is a pure state) there is at least one measurement the results of which are 

completely random. The simplest example is provided by a two-state system such as 

a spin-half particle, a polarised photon, or a two-level atom. An elementary optical 

two-state system is a beam splitter, Fig. 14.1. A single photon pulse (see Sect. 1.9.2) 

is directed towards a 50/50 beam splitter will be reflected or transmitted with equal 

probability (we assume an ideal device that does not absorb the photon). If we place 

a perfect photon detector in both output ports of the beam splitter we will get a count 

at one or the other detector with equal probability. At first sight it would appear that 

a single two-state system such as this is a perfect quantum coin toss, but the reality 

is more subtle. 

To understand why this is so consider the example depicted in Fig. 14.2 in which 

we try to toss the quantum coin twice in succession by redirecting the photon towards 

another identical beam splitter. In a real coin toss the outcome is no less uncertain 

than the first coin toss. Such is not the case for this ‘quantum coin toss’. In Fig. 14.2 

we illustrate a possible way to make the photon choose twice in succession whether to 

be reflected or transmitted, and immediately recognise the form of a Mach-Zehnder 

interferometer. Clearly we can set up this device so that the photon will be detected 

Fig. 14.1 A single photon pulse travelling in a single-mode fibre is mixed with another single-

mode fibre at an R/T beam splitter can be reflected with probability .Pa = R or transmitted with 

probability.Pb = T . In the case of a.50/50 beam splitter.R = T = 0.5 and a perfect photon detector 

in both output ports of the beam splitter, will register a count at one or the other detector with equal 

probability 
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Fig. 14.2 Tossing a quantum coin twice using a Mach-Zhender inteferometer. After the first beam 

splitter (fibre-mixer) in Fig. 14.1, a single photon is redirected, using optical fibres, towards an 

identical beam splitter with .R = T = 0.5. The device is now a Mach-Zehnder interferometer and 

can be adjusted using a phase shift so that the photon emerges with certainty in the upper output 

mode 

with certainty in say the upper photon detector. This is very different from tossing 

two coins in succession. 

The explanation of this phenomenon takes us to the heart of why quantum infor-

mation theory will necessarily be different from classical information theory. Imme-

diately after the first beam splitter the photon is in a quantum superposition of two 

distinct spatial modes of the field; 

.|ψ〉 =  
1√
2 
(|1〉a ⊗ |0〉b + |0〉a ⊗ |1〉b (14.1) 

If we place a photon detector in both output modes after the first fibre coupler it 

is easy to see that we will count a photon in each mode with equal probability. 

However the state is not a truly random state. In fact it is a pure state, the entropy 

of which is zero. The beam-splitter has unitarily transformed the initial pure state 

.|1〉a ⊗ |0〉b. If the system is caused to pass through another beam splitter a further 

unitary transformation takes place which, for an appropriate phase shift, will produce 

the state .|1〉a ⊗ |0〉b at the output and the photon will be detected with certainty in 
the upper detector. 

We need to distinguish a true coin toss from a ‘quantum’ coin toss. The key 

distinguishing feature is the ability of the quantum system to be prepared in a coherent 

superposition of the two mutually exclusive alternatives. While it is true that the result 

of an arbitrary Pauli measurement on a single two state system will give one bit of 

information in general, the system state is not like a classical coin toss, as the single 

photon example illustrates. 

To distinguish a true one bit classical probabilistic system from a quantum one bit 

probabilistic system we will refer to the quantum case as a qubit. A qubit is then a 

quantum system which can yield at most one bit of information upon measurement, 

but which can be in a coherent quantum superposition of the two mutually exclusive 

outcomes prior to measurement. In the example of Fig. 14.2 the state inside the 
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Fig. 14.3 The 

parametrisation of a single 

qubit state is one-to-one 

correspondence with a point 

on the unit sphere, called the 

Bloch sphere. here the point 

is labelled by spherical polar 

coordinates for a unit radius 

interferometer can be written as a superposition of the two possible paths, reflected 

(R) or transmitted (T) after the first fibre mixer as 

.|ψ〉 =  cos θ |0〉 +  e−i φ sin θ |1〉 (14.2) 

where .R = cos2 θ,  T = sin2 θ and . φ accounts for phase difference due to unequal 

path lengths, and we define the qubit basis states as . |0〉 = |1〉a ⊗ |0〉b, |1〉 = |0〉a ⊗ 

|1〉b. This is called dual rail encoding . The states of a single qubit are in one to 
one correspondance with the points on a unit sphere if we identify .θ,  φ  as spherical 

polar coordinates, Fig. 14.3. There are an uncountable infinity of such states, yet 

when photon number measurements are made at the output of the device we obtain a 

single bit of information with probability distribution .P(0) = cos2 θ = 1 − P(1). It  

is easy to see that photon number measurements are equivalent to a .σz measurement. 

In contrast a probabilistic description of a true coin toss is defined by a single real 

number . p. 

It is conventional to define the Pauli matrices so that .σz is diagonal in the qubit 

basis. In this basis the Pauli matrices are 

.σz = |1〉〈|1| − |0〉〈|0| (14.3) 

.σy = −i (|1〉〈|0| − |0〉〈|1|) (14.4) 

.σx = |1〉〈|0| + |0〉〈|1| (14.5) 

The input state in Fig. 14.2 can be written in the qubit code as .|ψ〉in  = |0〉 and 
the state transformation from input to output is.|0〉 →  cos θ |0〉 +  e−i φ sin θ |1〉. If we  
had injected the single photon pulse into mode-b we would have . |1〉 →  cos θ |1〉 −  

eiφ sin θ |0〉. This is called a single qubit gate. In summary, the single qubit gate 

implements the unitary transformation 

.|0〉 →  cos θ |0〉 +  e−iφ sin θ |1〉 (14.6) 

.|1〉. → cos θ |1〉 −  eiφ sin θ |0〉 (14.7) 
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In the case of . 2 qubits the system can exist in a superposition of all . 4 possible 

product states of each individual qubit. This requires . 6 real numbers, in general, to 

parameterise and there is no simple visualisation of the topology of the parameter 

space as in the case of the Bloch sphere. A recent attempt can be found in [ 3]. In 

contrast the case of two classical bits (two coins) requires three real numbers, and 

the space of parameters is a simple tetrahedron. In the case of .N qubits the topology 

becomes very complex affording an extraordinary level of control compared to the 

case of .N bits. It is this complex level of control over probability distributions 

for measurement outcomes, compared to that for classical distributions, that give 

quantum communication and computation their power. We discuss below an example 

of how even a single qubit can be harnessed to do things that a classical one bit system 

never could; secure key distribution. 

14.2 Single Photon Sources and Detectors 

The technology of the internet is based entirely on coherent pulses propagating in 

optical fibres. Huge advances in the ability to produce and control coherent optical 

pulses has made this possible [ 4]. Key components are: laser diodes, optical filters, 

couplers, switches, amplifiers, electro-optic modulators, photon counting detection. 

Integrated optical systems using waveguides in bulk materials have added new ways 

of processing optical signals. 

Quantum communication in fibre optical networks, and integrated optical systems, 

use quantum states of light, possibly encoding qubits, at transmitters and receivers 

We will concentrate on using single photon sources and single photon detectors 

capable of resolving the number of photons counted. 

Good single photon sources has been developed over the past couple of decades. 

From an optical communication perspective, it must be possible to produce transform 

limited single photon pulses with arbitrary temporal modulation. It is relatively easy 

to do this with coherent pulses but single photon pulse requires more sophisticated 

methods. One approach that can be used for both is based on Raman stimulated 

emission. 

14.2.1 A Raman Single Photon Source 

As an example of a single photon source we discuss a Raman model based on a 

three-level .� atomic system placed inside a single-sided cavity, see Fig. 14.4. Two  

long-lived states .|g〉 and .|e〉 are coupled by a third radiative state .|b〉. A strong 
classical electromagnetic control pulse .E(t) is applied to the ground state .|g〉 at 

frequency . �. The pulse is detuned from the atomic transition .|g〉 → |b〉, ensuring 
that the radiative state is never significantly populated. The resonance condition is 

.� − ωa = ωge, where.ωge is the energy difference between.|g〉 and.|e〉. The transition 

.|g〉 → |e〉 is mediated by the emission of a photon at frequency .ωa . 
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Fig. 14.4 An intracavity Raman single photon source. The atomic system is prepared in the ground 

state. A classical control field pulse.E(t) has a carrier frequency.ωc. The cavity resonant frequency 

is .ωa . The Raman resonance condition is .ωc − ωa = ωge where .�ωge is the energy difference 

between states.|g〉 and.|e〉. Both the control and cavity field are detuned from the auxiliary state.|b〉. 
When the control pulse is applied, the atom makes a two photon transition.g → e emitting a cavity 

field photon in the process. If the cavity id rapidly damped this photon is emitted very rapidly from 

the cavity. The temporal shape of the emitted photon is determined by the cavity response function 

and the temporal shape of the control field pulse 

In the interaction picture under the rotating wave approximation, the Hamiltonian 

describing this interaction is 

.Ha = �E(t)a†σ+ + �E∗(t)σ−a , (14.8) 

where .a† and . a are the internal cavity mode creation and annihilation operators, and 

.σ+ and .σ− are the raising and lowering operators in the subspace formed .|g〉 and .|e〉. 
At a finite temperature, the evolution of the cavity-atomic joint state is governed by 

the master equation (ME) 

. 

dρ 

dt  
= −i [Ha, ρ] (14.9) 

. +κ (n̄ + 1) D[a]ρ + κ ̄nD[a†]ρ , (14.10) 

where. κ is the decay rate of the cavity mode into the environment,.n̄ = (eμa − 1)−1 is 

the mean photon number in the environment with Boltzmann factors.μi = �ωi /kB T , 

and .D[a]ρ = aρa† − {a†a, ρ}/2 is the Lindblad dissipator. We have neglected 

decay between .|e〉 → |g〉 with the assumption that the atomic decay rate is much 

slower than the intra-cavity mode . κ . We further assume the atom-cavity system is 

initially in thermal equilibrium with the environment, and thus it is in a separable 

Gibbs state, .ρsys = ρ̄a ⊗ ρ̄σ . Thermal equilibrium ensures .μa = μσ . 

A reliable single photon source requires sufficient control over the mean photon 

number .〈a† o (t)ao(t)〉 and optical coherence of the pulse. The quantum Langevin 

equations describing the stochastic evolution of the intracavity field .a(t) is 

. 

da 

dt  
= −i E(t)σ+ − 

κ 

2 
a + 

√
κai . (14.11) 
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The initial condition is .〈a(0)〉 = 〈ai (0)〉 =  0. The input-output relation . ai (t) + 

ao(t) = 
√

κa(t), shows that the output field is the convolution of the cavity response 

and the product of the control field amplitude and atomic polarization 

.〈a0(t)〉 = −i
√

κ

∫ t 

0 

dt ′ exp(κ(t ′ − t)/2)E(t ′)〈σ+(t ′)〉 . (14.12) 

Controlling the shape of the classical drive .E(t) shapes the overall single photon 

pulse. 

The intensity of the emitted pulse is 

.〈a† oao〉 =  κ〈a†a〉 −  
√

κ〈a†ai + a
† 
i a〉 + 〈a† i ai 〉 , (14.13) 

where .〈a† i ai 〉 =  ̄n is the mean photon number of the external field. A reliable single 

photon source will operate in the limit of a large cavity decay rate . κ and thus prefer-

entially emit into the environment rather than be coherently absorbed by the atom. 

In this limit, we can adiabatically eliminate the cavity dynamics, 

.a(t) → −  
2i E(t) 

κ 
σ+ + 

2√
κ 
ai . (14.14) 

After adiabatic elimination , the cavity dynamics, the output intensity is 

.〈a† o (t)ao(t)〉 =  ̄n + 
2i√
κ

〈E(t)a
† 
i σ+ − E∗(t)σ−ai 〉 . (14.15) 

To find the second term, we start by rewriting the master equation (14.9) for the 

atomic system by replacing . a in the adiabatic limit 

.Lρ(σ ) = 
4(n̄ + 1)I (t) 

κ
D[σ+]ρ(σ ) + 

4 n̄ I  (t) 

κ
D[σ−]ρ(σ ) , (14.16) 

where .ρ(σ ) describes the quantum state of the atom alone and .I (t) = |E(t)|2. The 
dynamics of the atom appear to spontaneously absorb and emit photons according to 

the mean-photon number of the environment . n̄ and the intensity of the control pulse 

.I (t). 

We derive the quantum Langevin equation for .σ+ using the input mode . ai , which 

yields the general solution to . σ+(t) 

.σ+(t) = −  
2i√
κ

∫ t 

0 

dt ′e 
κ 

2 (t−t ′)σz(t
′)ai (t

′)E∗(t ′) (14.17) 

Multiplying this expression by .a
† 
i from the right and making use of the commuta-

tion relation .[ai (t), a† i (t ′)]=δ(t − t ′) and the integral identity . 

∫ t 

0 δ(t − t ′)g(t ′)dt ′ = 

g(t)/2, we find the general solution 

. 

2i√
κ

〈E(t)a
† 
i σ+ − E∗(t)σ−ai 〉 =  

4I (t) 

κ
〈σz(t)〉 . (14.18) 
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Rewriting (14.15), we obtain the expression for the mean photon number in the 

output mode 

.〈a† o (t)ao(t)〉 =  ̄n + 
4I (t) 

κ
〈σz(t)〉 . (14.19) 

Finally we can find the behavior of .〈σz(t)〉. Making use of the fact that . σz = 1 − 

2Pg(t), we can find the evolution of .σz by computing the probability of measuring 

a photon in the ground state .Pg(t). Thus, in the Heisenberg picture .Pg(t) evolves 

according to (14.16), resulting in 

. 

dPg(t) 

dt
= −  

4I (t) 

κ 
(2 n̄ + 1)Pg(t) + 

4I (t)n̄ 

κ 
(14.20) 

which has the following general solution—given the initial condition . Pg(0)=(1 + 

e−μσ )−1: 

.Pg(t) = 
e−τ (1 + n̄) + n̄ 

2n̄ + 1
− e−τ 

1 + eμσ 

. (14.21) 

Here .τ = (4/(2n̄ + 1)κ)
∫ t 

0 dt
′ I (t ′) and approaches . 0 in the long-time limit at zero 

temperature, corresponding to a perfect emission. In the long-time limit where.t ≫ 0, 

the inversion of the atom .〈σz(t)〉 becomes constant 

.〈σz(t)〉 =  
1 

2 n̄ + 1 
= tanh

(

�ω 

2kB T

)

, (14.22) 

which describes the mean atomic polarization of a two-level atom in a thermal bath 

as expected. The mean intensity emitted in the long-time limit is 

.〈a† o (t)ao(t)〉 =  ̄n + 
4I (t) 

κ 
tanh

(

�ω 

2kB T

)

. (14.23) 

As the temperature goes to zero we find that 

.〈a† o (t)ao(t)〉 =  
4|E(t)|2 

κ 
. (14.24) 

The Raman single photon source emits a pulse with temporal shape determined by 

the classical drive .E(t). See Sect. 1.9. 

14.2.2 Single Photon Detectors 

A single photon detector is a measurement device that can reliably count a single event 

from a single photon pulse with high efficiency. Currently superconducting nanowire 

detectors (SNSPD) are the best choice [ 5]. They consists of a thin film (typically 

5–10 nm thick) of superconducting material patterned as a meandering nanowire 

(50–100 nm wide). In such a device the superconducitng wire undergoes a highly 
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Fig. 14.5 An intracavity Raman single photon detector. The atomic system is prepared in the 

excited (e) state. A classical control field pulse.E(t) has a carrier frequency.ωc. The cavity resonant 

frequency is .ωa . The Raman resonance condition is .ωc − ωa = ωge where .�ωge is the energy 

difference between states.|g〉 and.|e〉. Both the control and cavity field are detuned from the auxiliary 

state.|b〉. When the control pulse is applied, a synchronous single photon pulse will be absorbed with 

probability .pa (or reflected with probability .1 − pa) and the atom makes a two photon transition 

.e → g. The probability .pa is maximised when the temporal shape of the control field matches the 

temporal shape of the single photon pulse. If the atom is found in the ground state, or a reflected 

photon is counted, the photon has been absorbed. This detector functions as a time-resolved single 

photon detector 

localised transition form superconducting state to a resistive state due to photon 

absorption. This causes a rapid spike in resistance and a consequent voltage spike 

as the superconductor rapidly relaxes back to the superconducting state. SNSPDs 

offer near-unity detection efficiencies over a wide spectral range.combined with a 

low dark count rate. They have a very fast response with short dead times and fine 

timing resolution. 

Another approach to a single photon detector is based on a “time reversed” version 

of a Raman single photon source, see Fig. 14.5. 

The absorption probability for a rapidly damped cavity can be calculated using 

the Fock state master equation method described in Sect. 5.2. The result to lowest 

order in .κ−1 is [ 6] 

.pa = 
4 

κ

∣

∣

∣

∣

∫

dt ′E∗(t ′)ν(t ′)

∣

∣

∣

∣

2 

(14.25) 

where .ν(t) is the temporal mode shape for the single photon input and . κ is the cavity 

linewidth. Using (1.123) this is a maximum when .E(t) = E0ν(t). Note that we must 

ensure that .|E0|2 < κ  for the approximation to be valid. 

The Raman single photon detection scheme can be formalised as a time resolved 

photon detection measurement. We first define a projection operator valued measure 

as 

.�μ = a
† 
d (t)|0〉〈0|ad (t) (14.26) 

where 

.ad (t) =
∫ ∞ 

−∞ 

dωe−iωt μ̃∗(ω)a(ω) (14.27) 
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Note that this operator does not obey the free field commutation relations. The 

detector is addressable in so far as the experimentalist has control over the function 

.μ(ω). The probability to count a single photon pulse, prepared in the state .|ν〉, is  

.p = tr[�μ|ν〉〈ν|] =
∣

∣

∣

∣

∫ ∞ 

−∞ 

dtμ∗(t)ν(t)

∣

∣

∣

∣

2 

(14.28) 

14.3 Entanglement 

Quantum entanglement refers to correlations between the results of measurements 

made on distinct subsystems of a composite system that cannot be explained in terms 

of standard statistical correlations between classical properties inherent in each sub-

system. An example is provided by the violation of the Bell inequality for two distinct 

two-state quantum systems (see Chap. 13). If the subsystems are space like separated, 

quantum entanglement implies non-locality. Non-locality means that measurements 

on distinct subsystems, local measurements, are incapable of determining the joint 

state of the composite system. While quantum entanglement and non-locality are 

related they are not the same. 

In quantum optics the simplest source of entanglement is provided by the non-

degenerate squeezed vacuum state produced by spontaneous parametric down con-

version (see Sect. 1.5), 

.|E〉 =  (1 − λ2)1/2 
∞
∑

n=0 

λn|n〉a ⊗ |n〉b (14.29) 

where .λ = tanh r with . r the squeezing parameter. Note that this state is a zero eigen-

state of the photon number difference operator, .n̂a − n̂b, between the two modes. 

The entanglement here results from a superposition of the infinite number of indis-

tinguishable ways we can distribute equal numbers of photons in each mode. The 

reduced state of each subsystem (modes a and b) is in fact a thermal state (see Sect. 

1.5). This is the maximum entropy state for a mode with a fixed average energy. Thus 

while the total state is a pure state with zero entropy, the state of each subsystem is 

as uncertain as it can be given the constraint on the average energy. 

Measurements on the component sub-systems of entangled states are insufficient 

to completely determine the joint state of the system. In some cases local measure-

ments may give no information at all about the joint state and the entropy of the 

subsystem reduced states are maximal. Such states are called maximally entangled. 

An example is provided by the following eigenstates of total photon number, 

.|ψN 〉 = 1√
N + 1 

N
∑

n=0 

|n〉a ⊗ |N − n〉b (14.30) 
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Local measurements on either mode, say a, are described by the reduced density 

operator 

.ρa = Trb(ρ) (14.31) 

where .Trb refers to the partial trace over mode b. In this case the resulting reduced 

density operator for each mode is the identity matrix in .N + 1 dimensions. The 

entropy of such a state is 

.Sa,b = −Trρa,b ln ρa,b = ln(N + 1) (14.32) 

which, given the constraint on total photon number, is maximal. In general the entropy 

of each subsystem satisfy an important inequality, the Araki-Lieb inequality, 

.|Sa − Sb| ≤  S ≤ Sa + Sb (14.33) 

where . S is the entropy of the state of the joint system. In the case of a pure entangled 

state this implies that .Sa = Sb. 

Entangled states do not necessarily need to be pure states. Furthermore there can be 

non-entangled states that still exhibit classical correlations between the subsystems. 

If an entangled state interacts with an environment entanglement can be reduced to 

zero while classical correlations remain. An example is provided by a two-mode 

squeezed vacuum state undergoing phase diffusion in each mode. The steady state 

density operator describing such a system is 

.ρ = (1 − λ2) 

∞
∑

n=0 

λ2n|n〉a〈n| ⊗ |n〉b〈n| (14.34) 

which still retains a perfect classical correlation between the photon numbers in 

each mode. However as the sate is a convex sum of states which factorise, the state 

in (14.34) is not entangled and in fact is defined as separable. 

It seems reasonable to suggest that between pure entangled states and totally sep-

arable mixed states there is a gradation of entanglement. To quantify this we require 

a measure of entanglement, and a number of such measures for finite dimensional 

Hilbert spaces have been proposed. The situation for infinite dimensional Hilbert 

spaces, which is the case for much of quantum optics, is complicated except for a 

special class of states known as Gaussian states. Such states have a gaussian Wigner 

function. The two mode squeezed state is an example (see Chap. 3). 

When a pure state, .|ψ〉 interacts with an environment it undergoes decoherence 

and generally becomes a mixed state,. ρ. We can then ask for the probability of finding 

the initial state, .ψ in the ensemble represented by . ρ. This probability is given by 

.F = Tr(ρ|ψ〉〈ψ |) (14.35) 

which is called the fidelity. Fidelity has a deeper significance in terms of the statistical 

distinguishability of quantum states. 
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14.4 Quantum Key Distribution 

For millennia, communicating parties have devised schemes whereby messages can 

be authenticated (the signature) and secured from unauthorised access (cryptogra-

phy). Modern methods (symmetrical crypto-systems) for secure electronic commu-

nication involve the prior exchange of a random number which is called the key. If 

the communicating parties share this number with each other and no one else, mes-

sages can be securely encrypted and decoded. The method however is vulnerable to a 

third party acquiring access to the key. In this section we will describe how quantum 

mechanics enables two communicating parties to arrive at a shared secure key via 

Quantum Key Distribution (QKD). 

The idea that quantum mechanics might enable more secure communication was 

hinted at in the work of Wiesner [ 9] and made explicit in the pioneering work of 

Bennett and Brassard [ 10], in which the first QKD protocol, BB84, was presented. It 

uses a set of four qubit states to encode one bit. The first experimental demonstration 

of QKD was made by Bennett, Brassard and co-workers in 1989 [ 11]. A thorough 

review can be found in [ 12]. 

The key idea behind QKD is the Heisenberg uncertainty principle which ensures 

that any attempt to measure a quantum state will change it, and thus eavesdrop-

ping can in principle be detected. This is related to a powerful theorem in quantum 

information theory, the ‘no-cloning’ theorem: an unknown quantum state cannot 

be duplicated [ 13]. Thus experimental QKD offers important new insights into the 

nature of quantum physics. Let us now follow a classical protocol to establish a shared 

random key between two communicating parties, called Alice (A) and Bob(B). 

Alice and Bob are assumed to have a means to generate completely random binary 

numbers. Alice generates a random binary number and sends it to Bob, and Bob 

generates a random binary number and compares it to the binary number received 

from Alice. If it is the same he tells Alice publicly that this is the case, but does 

not reveal what the value actually was. If it was the same, Alice and Bob keep this 

binary number, otherwise they discard it. Alice and Bob then repeat the procedure 

for another binary number and continue in this way until they share a binary string 

that is a subset of the total binary string that Alice sent to Bob. If for some reason 

Alice’s binary number fails to get to Bob in a particular run, it makes no difference 

to the final shared binary string (although it does reduce the rate of communication 

for the shared binary string). The big problem with this method is that classically 

it is possible for an eavesdropper, Eve, to copy Alice’s transmitted binary number 

without disturbing it. Then Eve can listen to the public channel and hear Bob telling 

Alice that this number was the same as his binary number. QKD avoids this problem 

by making it impossible for Eve to measure (or copy) an unknown quantum state 

without also disturbing it in general. If Alice and Bob chose carefully the quantum 

state encoding their binary numbers an eavesdropper can be detected by Alice and 

Bob. 

Alice and Bob will communicate with polarised single photon pulses. These are 

defined in the same way as in Sect. 1.9 but now the modes are indexed by a polarization 

vector as well as wave vector. They first need to agree on how to physically implement 
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the encoding. Suppose Alice decides to transmit only vertically (V) and .+45◦(D— 

for diagonal) photons. She will send a V-photon when a previously generated random 

binary number is a 0 and a D-photon when the random binary number is a 1. 

.A : V ↔ 0; D ↔ 1 (14.36) 

Bob and Alice also agree that Bob can make a polarisation measurements of Alice’s 

photon in only two directions; horizontally (H) or at .−45◦ (A—for anti-diagonal). 

These measurements project onto non-orthogonal polarisation states. Bob randomly 

decides which of his two allowed measurements he will make on any photon he 

receives from Alice. The choice of measurement is made by referring to a previously 

generated random bit according to the code, 

.B : 0 ↔ A; 1 ↔ H (14.37) 

When Bob measures the polarisation he records the result as a yes (Y) or a no (N) 

depending on whether the photon was indeed found to have that particular polarisa-

tion. Bob will never record a Y if his bit is different from Alice’s (crossed polarisers), 

and he records a Y on 50% of runs in which their bits are the same. Thus Bob can 

only get a Y if his bit is the same as Alice’s (although he may get a N in that case 

as well). Finally Bob sends a copy of his results to Alice, over a public channel, but 

he does not tell Alice what measurement he made on each bit. Now Alice and Bob 

retain only those bits for which Bob’s result was “Y”. This process is called sifting 

and A and B share the same key in principle but there may be errors. 

If Eve, an eavesdropper, makes a QND polarisation measurement of Alice’s trans-

mitted photons in an attempt to learn what was sent, she will introduce a 25% error 

rate between Alice and Bob’s shared key. This occurs because her measurement will 

project the transmitted state into the eigenstates corresponding to her measurement 

result and this state may be different from that sent by Alice. Alice and Bob can 

test for eavesdropping by agreeing to sacrifice part of their shared key to check the 

error rate in a process called reconciliation. If the error rate is 25% or higher they 

will suspect an eavesdropper and discard the entire shared key. In reality errors are 

inevitable, and Alice and Bob will need to agree on an acceptable error threshold 

less than 25%. The reconciliation algorithm uses parity and error correcting codes 

to reconcile errors without exposing the key values. A final essential step is privacy 

amplification to reduce any partial information acquired by an eavesdropper about 

the raw key to a negligible level. It is a hashing algorithm that compresses a longer, 

partially secure key into a shorter, more secure final key. 

The performance of an experimental QKD system is stated in terms of the number 

of bits per second of a shared secret key (the distilled bit rate .Rdis) and the distance 

between the communicating parties. It is usually easier to determine the raw bit rate 

(.Rraw). This is determined by actual losses in the quantum channel, sources and 

detectors as well as possible intervention of an eavesdropper. From this the error 

rate in the sifted key (obtained after Alice and Bob perform a round of classical 

communication to reconcile their bases) is called the quantum bit error rate (QBER). 
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Fig. 14.6 A QKD BB84 implementation using a single photon source (SPS) [ 14]. Telecom single 

photon pulses are generated by Alice and passed through a half-wave plate (HWP). The polarised 

photons are coupled into a single-mode fibre connected to Bob. A 50/50 beam splitter (BS) fibre 

coupler makes a passive random choice for which basis Bob measures. Each of the two output 

channels pass through polarisation (PC) control elements towards polarising beam splitters (PBS) 

before photo-detection (PD) 

The requirement that we use single photon states to code the bits of information 

places considerable demands on the physical resources required to implement BB84. 

Considerable progress has been made in single photon sources. Given such a source 

we also need to be able to reliably detect single photons, with a small dark count rate, 

and we need to propagate single photon pulses over possibly large distances with as 

little loss as possible. If the loss rate is too high very few counts will be available 

to Alice and Bob to construct their shared key and thus the data transmission rate 

could be unacceptably low. Finally, if we are to use standard optical fibres to transmit 

the photons, polarisation encoding is difficult owing to the birefringence of optical 

fibres. In practice this can be addressed using a polarisation compensation protocol 

to automatically follow the drift of polarisation and recover any polarisation changes. 

An example of a QKD BB84 using single photon sources was presented by Mor-

rison et al. [ 14]. A simplified scheme is shown in Fig. 14.6. The single photon source 

was a frequency doubled output from a InGaAs/GaAs quantum dot inside an oxide-

apertured micropillar. The source repetition rate was .160.7 MHz. The quality of the 

single photon source is defined by how identical successive pulses are. This is mea-

sured by.g(2) (0) which here is.0.036 (see Sect. 2.7). The four BB84 polarisation states 

are encoded using a motorised half-wave plate (HWP). A motorised half-wave plate 

combines a half-wave plate (HWP), which is a birefringent optical element, with a 

motorised mount that can rotate the plate to a desired orientation. Photons are trans-

mitted through a quantum channel consisting of optical fibre spools with an average 

propagation loss of 0.1904 dB/km including connectors. The receiver at Bob consists 

of a 50/50 fibre beam-splitter (BS) followed by two polarising beam splitters and 

in-fibre polarisation controllers (PC) to project into the H/V and D/A basis respec-

tively. Photons are detected with superconducting nanowire single-photon detectors 

(SNSPDs). The quantum bit error rate (QBER) at the maximum tolerable loss of 

.∼35 dB is .∼2% and is primarily limited by the quality of the single photon source. 
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14.5 Quantum Teleportation 

Quantum teleportation is a key quantum communication scheme, with no classical 

analogue, and plays a key role in quantum networks and quantum computing. It 

permits the transfer of an unknown quantum state from a client system (C) pro-

vided to a sender (A), to a remote receiver (B). The sender and receiver share a 

maximally entangled state, and they can communicate via a classical channel. The 

original proposal of Bennett et al. [ 15] was posed in terms of systems with a two 

dimensional Hilbert space. Furasawa et al. [ 16], using a proposal of Braunstein and 

Kimble [ 17], demonstrated that the method can also be applied to entangled systems 

with an infinite dimensional Hilbert space (called continuous variable ‘CV’ telepor-

tation), specifically for harmonic oscillator states. In that work, a coherent state was 

teleported using an entanglement resource that consisted of a two mode squeezed 

vacuum state. The joint measurements required for teleportation are joint quadrature 

phase on the client system and that part of the entangled resource shared by the 

receiver. 

Teleportation of continuous variables is possible using a perfect quadrature phase 

QND (quantum nondemolition) measurement between two optical modes, A and 

B, to create the entanglement resource. The state that is produced is an optical 

analogue of the EPR state which had previously been shown by Vaidman [ 18] to  

enable teleportation of continuous observable. The EPR state is not a physical state 

because quadrature phase eigenstates are infinite energy states. However we can use 

arbitrary close approximations to these states in terms of a squeezed vacuum state, 

see Sect. 13.5. This is essential feature exploited in the scheme of Furasawa et al. 

[ 16]. 

Suppose that at some prior time a two mode squeezed vacuum state is generated 

and that one mode is available for local operations and measurements at the sender’s 

location A by observer Alice, while the other mode is open to local operations and 

measurements in the receiver’s location B, by observer Bob. Alice and Bob can 

communicate via a classical communication channel. Thus Alice and Bob each have 

access to one of the two entangled subsystems described by 

.|E〉AB  =
√

(1 − λ2) 

∞
∑

n=0 

λn|n〉A ⊗ |n〉B (14.38) 

This state is generated from the vacuum state by the Unitary transformation 

.U (r ) = er(a
†b†−ab) (14.39) 

where .λ = tanh r and where .a, b refer to the mode accessible to Alice and the mode 

accessible to Bob respectively (see Fig. 14.7). 

The entanglement of this state can be viewed in two ways. Firstly as an entangle-

ment between quadrature phases in the two modes (EPR entanglement) and secondly 

as an entanglement between number and phase in the two modes. We can easily show 

that this state approximates the entanglement of an EPR state in the limit .λ → 1 or 
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Fig. 14.7 A teleportation protocol. The sender, Alice, shares one mode . A of a two-mode squeezed 

state, and another mode, the client, the state of which is unknown to her. Alice makes a measurement 

of the sum of the quadrature phase amplitudes of the client mode and mode . A. The results of the 

measurement are sent via a classical channel to the receiver, Bob, who conditional on the information 

received, applies a unitary control to his share of the two-mode entangled state, mode. B. The output 

of Bob’s action is a mode now prepared in the same state as the client mode, but neither Alice or 

Bob learn what this state is 

.r → ∞. The quadrature phase entanglement is easily seen by calculating the effect 

of the squeezing transformation (14.39) in the Heisenberg picture. We first define 

the quadrature phase operators for the two modes 

. X̂ A = a + a† (14.40) 

. ŶA = −i (a − a†) (14.41) 

. X̂ B = b + b† (14.42) 

. ŶB = −i (b − b†) (14.43) 

Then 

.Var  ( X̂ A − X̂ B ) = 2e−2r (14.44) 

.Var  ( ̂YA + ŶB ) = 2e−2r (14.45) 

where .Var  (A) = 〈A2〉 − 〈A〉2 is the variance. Thus in the limit of .r → ∞  the state 

.|E〉 approaches a simultaneous eigenstates of . X̂ A − X̂ B and . ŶA + ŶB . This is the 

analogue of the EPR state with position replaced by the real quadratures . X̂ and the 

momentum replaced by the imaginary quadratures, . Ŷ . 

The sender, Alice, has access to another quantum system, the client (C), in state 

.|ψ〉C . Perfect (projective) measurements are made of the joint quadrature phase 

quantities, . X̂C − X̂ A and . ŶC + ŶA on the client mode and the Alice’s part of the 

entangled mode, A, with the results.X , Y respectively. The conditional state resulting 
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from this joint quadrature measurement is described by the projection onto the state 

.|X , Y 〉CA  where 

.|X , Y 〉CA  = e− 
i 
2 X̂ A ŶC |X〉C ⊗ |Y 〉A (14.46) 

The (unnormalised) conditional state of total system after the measurement is then 

seen to be given by 

.| �̃(X ,Y )〉out = CA〈X , Y |ψ〉C |E〉AB  ⊗ |X , Y 〉CA (14.47) 

The state of mode B at the receiver, denoted as Bob, is the pure state 

.|φ(X ,Y ) (r)〉B = [P(X , Y )]−1/2 
CA〈X , Y |ψ〉C ⊗ |E〉AB (14.48) 

with the wave function (in the . X̂ B representation), 

.φ 
(X ,Y ) 
B (x) =

∫ ∞ 

−∞ 

dx ′e− 
i 
2 x

′YE(x, x ′)ψ(X + x ′) (14.49) 

where .ψ(x) = C 〈x |ψ〉C is the wavefunction for the client state we seek to teleport. 
The kernel is simply the wave function for the two mode squeezed state resource. 

The state in (14.49) is clearly not the same as the state we sought to teleport. 

However in the limit of infinite squeezing, .r → ∞, we find that . G(x1, x2; r ) → 

δ(x1 + x2) and the state of mode B approaches 

.|φXY  (r)〉B → e− 
i 
2 Y X̂ B e 

i 
2 X ŶB |ψ〉B (14.50) 

which, up to the expected unitary translations in phase-space, is the required tele-

ported state. 

For finite squeezing the state after Bob’s conditional control is not an exact replica 

of the client state. We can quantify the fidelity of the reproduction by computing the 

probability that the state received by Bob, after displacement, is the same as the client 

state. This probability is called the fidelity and is given by 

.F = |〈ψ |e i 2 μ X̂ B e− 
i 
2 ν ŶB |φ(X ,Y )〉|2 (14.51) 

with .μ = gY , ν  = gX  which allows for some flexibility in the choice of displace-

ments in the non ideal case. The quantity . g is called the gain. In the limit of infinite 

squeezing we expect .g → 1. 

In the experimental context, imperfections in the measurements, noise in the clas-

sical communication channel, degradation of the entanglement, and imperfections 

in the local unitary transformations, mean that Bob’s state is not precisely the same 

as the state of the client, C. A final step in any teleportation protocol is to check to 

see to what extent the state is teleported. In other words we need to determine the 

probability that the teleported state is the one we want, that is we need the fidelity. 
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This of course requires knowledge of the actual state of the mode C. As the fidelity 

is a probability it must be adequately sampled, so the verification stage requires 

repeated measurements upon the output state of the teleportation scheme at mode B. 

The previously mentioned errors act independently from trial to trial which means 

we must describe the teleported state as a mixed state, .ρB , in general. In this case 

the fidelity is given by 

.F = 〈ψ |ρB |ψ〉 (14.52) 

We can also define an overall measure of performance in terms of the average fidelity 

. F̄ obtained by averaging the fidelity over all possible client states, .|ψ〉, with some 

appropriate measure on the set of pure states. We first need to specify the class of 

client states and the ensemble from which they are drawn. In the case of client states 

drawn from an ensemble of coherent states we can obtain an explicit result. If A and 

B share no entanglement . F̄ = 
1 
2 
. This is the classical boundary for teleportation of 

a coherent state. A quantum protocol would need to give an average fidelity greater 

than .0.5. 

In order to effect a joint measurement of the combined quadratures . X̂C − 

X̂ A, ŶC + ŶA, the experiment of [ 16] first combined the client and sender field ampli-

tudes on a 50/50 beam splitter, followed by direct homodyne measurements of the 

output fields after the beam splitter. After the beam splitter we then make a homodyne 

measurement of .X -quadrature on mode C and the .Y -quadrature on mode A. In the 

case of homodyne detection, the actual measurement records are two photo-currents 

.(IX , IP ). For unit efficiency detectors, this is an optimal measurement of the corre-

sponding quadratures . X̂C , ŶA. In reality however efficiency is not unity and some 

noise is added to the measurement results. We shall return to this point below. 

The measured photo-currents are a classical stochastic processes and may be 

sent to the receiver, B, over a standard communication channel. On receipt of this 

information the receiver must apply the appropriate unitary operator, a displacement, 

to complete the protocol. Displacement operators are quite easy to apply in quantum 

optics. To displace a mode, say B, we first combine it with another mode, prepared 

in a coherent state with large amplitude, .α → ∞, on a beam splitter with very high 

reflectivity, .R → 1, for mode B. If .|φ〉B is the state of B, then after the combination 

at the beam splitter the state of B is transformed by 

.|φ〉B → D(β)|φ〉B (14.53) 

where .D(β) = exp(βb† − β∗b) is the unitary displacement operator, and 

.β = lim 
R→1 

lim 
α→∞ 

α
√
1 − R (14.54) 

In terms of the quadrature operators for B the displacement operator can be written 

.D(x, y) = eiy  X̂ B+i x  ŶB (14.55) 
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with .β = x + iy. A suitable choice of . β will produce the required displacements to 

complete the teleportation protocol. This was achieved by using the measured pho-

tocurrents to control the real and imaginary components of the displacement field 

using electrically controlled modulators. As the measurement records, the photocur-

rents, are classical stochastic processes they can be scaled by a gain factor, . g, to  

produce the required . β. 

The experiment included an additional step to verify to what extent the state 

received by Bob faithfully reproduced the state of the client field. In this experiment 

the state of the client was a coherent state. In essence another party, Victor, is verifying 

the fidelity of the teleportation using homodyne detection to monitor the quadrature 

variances of the teleported state. 

The key feature that indicates success of the teleportation is a drop in the quadra-

ture noise seen by Victor when Bob applies the appropriate unitary operator to his 

state. This is done by varying the gain . g. If Bob simply does nothing to his state 

(.g = 0), then Victor simply gets one half of a squeezed state. Such a state has a 

quadrature noise level well above the vacuum level of the coherent state. As Bob 

varies his gain, Victor finds the quadrature noise level fall until, at optimal gain, the 

teleportation is effected and the variance falls to the vacuum level of a coherent state. 

In reality of course extra sources of noise introduced in the detectors and control 

circuits limit the extent to which this can be achieved. 

In a perfect implementation, the fidelity should be peaked at unit gain. However 

photon loss in the shared entanglement resource and detector inefficiencies reduce 

this. In the experiment, the average fidelity at unit gain was found to be . F = 0.58 ± 

0.002. As discussed previously, this indicates that entanglement is an essential part 

of the protocol. Subsequent experiments have considerably improved on this, for 

example, Yukawa et al. [ 19] reported that a coherent state was teleported with a 

fidelity .F = 0.83 ± 0.01. 

14.6 Entanglement Swapping 

In developing quantum networks it is desirable to be able to entangle optical systems 

that are widely separated in space. Entanglement swapping [ 20] is one way to achieve 

this. Entanglement swapping is a ‘five agent’ scenario, see Fig. 14.8. Two agents, . S1 
and .S2 prepare independent pairs of two-photon entangled states. A central observer 

. C , located at the origin, performs a joint measurement on one mode of each of the 

independent entangled pairs that propagate towards the origin. Conditional on this 

result, the remaining modes of each entangled pair are entangled, despite the fact 

that they never locally interacted in their past. In order to verify this, .A and .B can 

perform a Bell test (an CHSH test) and send the measurement settings and results 

back to .C who will use her measurement results to partition the data received from 

. A and . B in order to verify a Bell violation. 

We will discuss an elegant entanglement swapping experiment reported by Halder 

et al. [ 21] as it illustrates some important aspects of temporal modes that parallels 
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Fig. 14.8 A space-time diagram for entanglement swapping. Two independent agents, .S1 and . S2 
each prepare a two-photon entangled state. One mode of each pair propagates to a central observer. C , 

who performs a local Bell measurement, while the other modes of each pair propagate to observers 

.A, B who each perform a Bell test (CHSH). Then . A and . B send the results to . C who, conditioned 

on his results can verify that the photons received by .A, B were entangled 

optical time division multiplexing in classical optical communication schemes. The 

scheme is depicted in Fig. 14.9. 

The experiment uses time-bin entangled photon pulses. To understand this, we 

first consider a classical time-bin coding scheme. In some counting interval .[0, t) we 
define .N time bins each of duration . T . Within each time bin a pulse can arrive early 

or late. A pulse arriving in the first half of a bin is a logical one while. pulse arriving 

in the second half of a bin is logical zero. This is depicted in Fig. 14.10. 

The scheme in Fig. 14.9 works as follows. Two set of time-correlated photon pairs 

are created in each of the spontaneous parametric down convertors. Of the two pulses. 

the only way to get a coincidence count at the central detectors is if the incoming 

photon pulses do not overlap in time. Let us assume that we have good time resolution 

for these single photon detectors. In this case we do not know from which source 

the early or late photon originated. This means the undetected photon pairs are time 

bin entangled despite the fact that they originated in completely independent SPDC 

sources. In the experiment of [ 21] these two photons were subject to a correlation 

measurement to show that they are entangled, conditioned on the time-resolved single 

photon detection evens at the central detectors in the center. 

If we use only linear optics we cannot make a complete Bell measurement however 

we can make a non deterministic Bell measurement that succeeds 50% of the time. 

See Exercise 14.3. 
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Fig. 14.9 A scheme for entanglement swapping with time-bin encode qubits [ 21] 

Fig. 14.10 A A classical optical circuit to encode a bit string into pulse time code. An incoming 

stream of equally spaced coherent pulses is optically switched onto a direct path or a delay path 

to encode bits as early or late pulses in each time bin. B A time-bin qubit encoder. A sequence 

of single photon pulses is input to an optical circuit using 50/50 fibre couplers to create an equal 

quantum superposition of logical bits. This is a time-bin encoded qubit. Note that the total photon 

number in each time bin is one 
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Problems 

14.1 Show that the unitary transformation from input to output in Fig. 14.2 is given 

by 

.|0〉 →  cos(φ/2)|0〉 +  i sin(φ/2)|1〉 (14.56) 

up to an overall phase. 

14.2 In an entanglement swapping experiment, the two sources generate the polar-

isation entangled pairs 

.|�〉 =  
1 

2 
(|HH〉12 + |VV 〉12) (|HH〉34 + |VV 〉34) (14.57) 

where .|xx〉 jk  = a
† 
x, j a

† 
x,k |0〉 and . j, k label spatial plane wave modes and. x ∈ {H , V } 

labels polarisation of those modes. A Bell basis measurement on modes .2, 3 is a 

simultaneous measurement of the Pauli operators .X2 X3, Z2 Z3 where 

. Z = |H〉〈H | − |V 〉〈V |, X = |H〉〈V | + |V 〉〈H |. 

Show that the conditional state of modes .1, 4 are entangled conditional on the two 

binary outcomes of these measurements. 

14.3 A partial Bell state measurement can be made on two dual-rail qubit states 

involving two photons in four modes using only beam splitters and number resolving 

detectors. In terms of dual-rail encoding, the polarisation Bell states in (13.4) can be 

written 

BS 

BS 

SWAP 

Q1 

Q2 

a1 

a2 

a3 

a4 

n1 

n2 

n3 

n4 

.|�±〉 =  
1√
2 
(|01〉 ± |10〉) (14.58) 

.|�±〉 =  
1√
2 
(|00〉 ± |11〉) (14.59) 

where . |00〉 = |1〉1|0〉2|1〉3|0〉4, |10〉 = |0〉1|1〉2|1〉3|0〉4, |01〉 = |1〉1|0〉2|0〉3|1〉4, 
|11〉 = |0〉1|1〉2|0〉3|1〉4. We will refer to .|�±〉 as even parity states while .|�±〉 are 
odd parity states. 
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Using the HOM interference effect (see Sect. 1.9.2) show that this implements a 

partial Bell state measurement that distinguishes the states .|�+〉 and .|�−〉 but not 
the states .|�+〉 and .|�−〉, depending on the count pattern. 
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15Quantum Optical Computation 

Abstract 

In 1982 Richard Feynman (Int J Theor Phys 21:467, 1982, [ 1]) suggested there 

were certain problems that would be difficult to preform on a computer running 

according to classical mechanics but which would be easy to do on a computer 

running according to quantum principles. The reason why this is so is easy to see. 

A quantum system consisting of .N interacting spins requires a simulation using 

vectors of .2N dimensions in general. This exponential growth of the basis size 

is what makes classical simulations of complex quantum problems so difficult. 

On the other hand if we built a system with N interacting spins and allowed it 

to evolve unitarily, no such difficulty would be encountered. It would appear that 

a computer executing unitary evolution on a system of two level systems could 

significantly outperform a classical computer set to solve the equivalent problem. 

In this chapter we introduce the idea of universal quantum computation and discuss 

various quantum optical schemes for implementing it. 

15.1 Introduction 

In 1985 David Deutsch [ 2] gave examples of problems that might be solved more 

efficiently on such a machine when compared to a classical machine. The promise of 

quantum computation suggested by Feynman and elaborated by Deutsch was made 

very apparent in the factoring algorithm of Shor in 1994 [ 3]. Shor gave a quantum 

algorithm by which a large integer could be factored into its prime components with 

high probability, more efficiently than any known algorithm for a classical computer. 

As the supposed difficulty of factoring large integers is used in modern encryption 

schemes, Shor’s algorithm indicated that such schemes would be open to attack by 

anyone with a quantum computer. 

To build a computer we need to build a cascaded array of irreversible switches, 

synchronised by a clock signal, so that the change in state of one switch can act as 

a control for another. In a modern silicon computer the basic controllable switches 
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are transistors and signals are voltages. It is a very large array (trillions) of cascaded 

switches. We do not use optical switches for computer chips as the resulting device 

would be too large, however they are used extensively for optical communication 

systems. Optical switches use pulses of classical light generated by a laser. 

Quantum computers are as constrained as classical computers in the kinds of 

functions they can evaluate (so called computable functions) however a quantum 

computer can potentially solve a problem more efficiently than a classical computer. 

A quantum computer is a cascaded array of reversible (unitary) quantum 

switches—usually we call them gates—synchronised by a clock signal. The overall 

device is reversible (in a perfect device) right up until the output is readout. That step 

is necessarily irreversible. Once a measurement is made a quantum switch cannot 

be reversed. This is a fundamental feature of measurement in quantum theory (see 

Chap. 7). Thermodynamics again ensures that no measurement can be perfect so some 

measurements make mistakes and accidental measurements are also irreversible. 

The efficiency of an algorithm is related to how many computational steps (number 

of switches) are required to solve the problem as the ‘size’ of the problem increases. 

The size of a problem can often be expressed by the number of bits in a single 

number, for example in the case of the factoring problem, the size of the problem 

is just the number of bits required to store the number to be factored. If the number 

of steps required to implement an algorithm grows exponentially with the size of 

the problem, the algorithm is not efficient. If however the number of steps grows 

only as a polynomial power of the size of the problem, the algorithm is efficient. 

Shor’s algorithm is an efficient factoring algorithm for a quantum computer, while 

all known algorithms for factoring on a classical computer require an exponentially 

increasing number of steps as the size of the integer to be factored increases. 

How does a quantum computer achieve this enormous increase in efficiency? The 

answer lies in the quantum superposition principle. Suppose we wish to evaluate a 

function . f on some binary input string . x to produce a binary output string, . f (x). 

We can code the input and output binary string as the product state of .N qubits. The 

output qubits however are preset to zero. Now we set up a machine so that under 

unitary quantum evolution the state transforms as 

.|x〉|0〉 → |x〉| f (x)〉 (15.1) 

Why do we demand that the transformation be unitary? Consider what happens when 

we prepare the input qubits in a uniform superposition of all possible input states; 

.

∑

x 

|x〉|0〉 →
∑

x 

|x〉| f (x)〉 (15.2) 

If the dynamics is unitary the linearity of quantum mechanics ensures that (15.1) 

implies (15.2). It would appear that in a single run of the machine we have evaluated 

all possible values of the function. 

This is not quite as interesting as it seems. If we measure the output qubits we 

will get one value at random. That does not seem very useful. To see why it is useful 
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to do this let us ask; when would we ever want to evaluate every value of a particular 

function? The answer is, when we are not so much interested in a particular value of 

the function as a property of the function. The power of quantum computation arises 

in what we do next, after the transformation in (15.2). In the next step we continue to 

unitarily process the output register to extract, in one go, a property of the function, 

while simultaneously giving up information on the output of any particular evalua-

tion. In all of this we emphasise the need to perform perfect unitary transformations 

of the qubits. Moreover the unitary transformations necessarily entangle many qubit 

degrees of freedom. A quantum computer must produce highly entangled states of 

many qubits without suffering any decoherence. It is this requirement that makes a 

physical realisation of a quantum computer so difficult to achieve as we shall see 

below. 

How can we use the superposition state in (15.2) to determine properties of func-

tions? To see this consider a function . f which maps the binary numbers .{0, 1} to 
.{0, 1}. There must be four such functions, two of which are constant functions with 

. f (0) = f (1), and two have . f (0) �= f (1), so called balanced functions. Suppose 

now the problem involves determining if a function is balanced or constant. On a 

classical computer to answer this we need to make two evaluations of the function, 

. f (0), f (1). We would then need to run the computer twice. However a quantum 

computer can determine this property in only a single run. 

Suppose we have two qubits. One qubit will be used to encode the input data 

and the other qubit, the output qubit, will contain the value of the function after the 

machine is run. The output qubit is initially set to . 0. The machine might then run 

according to (15.1). However there is a problem with this expression. If. f is a constant 

function we have two distinct input states unitarily transformed to the same output 

state. Clearly this is not a reversible transformation and thus cannot be implemented 

unitarily. The problem is easily fixed however by setting up the machine to evolve 

the states according to 

.|x〉|y〉 → |x〉|y ⊕ f (x)〉 (15.3) 

where the addition is defined modulo two and we have allowed all possible settings 

of both qubits. The unitary transformation which realises this operation is called the 

. f -controlled NOT gate. The input qubit . x is the control qubit while the output qubit 

. y is the target. If the value of . f on the control qubit is one, the bit on the target is 

flipped; thus the name. Every unitary transformation on qubits can be realised as 

suitable networks of simple one and two qubit gates using primitive gate operations. 

The quantum algorithm that solves this problem is a version of a quantum algo-

rithm first proposed by Deutsch. It proceeds as follows. In the first step we prepare 

the output qubit in the state .|0〉 − |1〉 (we ignore normalisation in what follows for 

simplicity). This can be done using a single qubit rotation .|1〉 → |0〉 − |1〉. Such 
a rotation is called a Hadamard transformation. In the second step the input qubit 

is prepared in the 0 state and is then subjected to a Hadamard gate as well, which 

immediately produces a superposition of the two possible inputs for the function. f . 

In the third step we couple the input and output qubit via the . f -controlled NOT gate. 

The transformation is 
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Fig.15.1 An optical realisation of the Deutsch algorithm in terms of an optical fibre (or waveguide) 

Mach-Zehnder interferometer. The fibre couplers are symmetric (50/50). Synchronous transform-

limited single photon pulses can be injected into either arm. In this case only the upper (U) arm is 

used. Single photon detectors sample the probability distributions for detection at the upper detector 

or lower detector. The phase shifts are chosen according to the values of a binary function . f as 

. φ0 = f (0)π, φ1 = f (1)π 

.(|0〉 + |1〉)(|0〉 − |1〉) → ((−1) f (0)|0〉 +  (−1) f (1)|1〉)(|0〉 − |1〉) (15.4) 

In the last step we apply a Hadamrd gate to the input qubit so that 

. ((−1) f (0)|0〉 +  (−1) f (1)|1〉)(|0〉 − |1〉) → (−1) f (0)| f (0) ⊕ f (1)〉(|0〉 − |1〉) 
(15.5) 

Thus the input qubit is in state 0 if . f is constant and is in state 1 if . f is balanced and 

measurement of the qubit will determine if the function is balanced or constant with 

certainty in a single run of the machine. 

There is a simple quantum optical realisation of this algorithm based on a Mach-

Zehnder interferometer, see Fig. 15.1. The interferometer couples two modes of the 

field, labeled upper (U) and lower (L). A single photon in the mode-U encodes logical 

. 1 while a single photon in mode-L encodes logical . 0. At the input a single photon in 

mode-U is transformed by the first beam splitter into a superposition state in which it 

is in either mode-1 or mode-0. If we encode our qubits so that a.|1〉 corresponds to the 
photon in mode-1 and a .|0〉 corresponds to a photon in mode-0, the first beam splitter 

performs a Hadamard transformation. Now we insert into each arm a phase shift . φi 

which can only be set at 0 or . π phase shift. We encode the value of the functions as 

.φ0 = f (0)π, φ1 = f (1)π . Set the interferometer so that in the absence of the phase 

shift the photon emerges with certainty at the upper detector, which encodes a 1. The 

lower detector encodes a zero. It is then clear that if . f (0) = f (1) a single photon 

will emerge at the upper detector, while if . f (0) �= f (1) the photon will be detected 

at the lower detector, that is the result is a 0. This device is a classically controlled 

all-optical switch. 

The previous example illustrates the key features of a quantum algorithm. Firstly 

it involves unitary transformations of pure quantum states. Secondly we need both 

single qubit and two qubit interactions to produce entangled states. These were the 

Hadamard transformation (H-gate) and a controlled NOT transformation (CNOT-

gate). It turns out that suitable networks of an arbitrary single qubit rotations, together 

with a controlled NOT gate, can perform any computation involving arbitrarily many 
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qubits. These features guide us in the search for a suitable physical implementation 

of a quantum computer. The requirement of unitarity is most severe. In general small 

imperfections in an actual machine will not enable perfect unitary evolution. The pure 

states are necessarily degraded by unwanted interactions with extraneous degrees of 

freedom, the environment. The necessity for at least two qubit interactions means 

we must necessarily seek interactions that entangle at least two quantum systems. 

Fortunately even in the presence of nonunitary transformations we can use quantum 

error correction methods to mitigate the deleterious effects of environment induced 

errors. 

The difficulty for optical quantum computation is that photons at optical frequen-

cies do not interact except when mediated by matter, and these interactions are weak 

at the single photon level. This problem can be circumvented using measurement 

based approaches that produce highly non classical states of light in a multimode 

system, conditioned on a measurement outcome (photon counting or homodyne 

detection) made on a subset of modes [ 4]. When this is combined with the ease 

of generating entangled photon pairs (Bell states) in down conversion, a powerful 

scheme for quantum computation was developed based on fusion gates [ 6]. A second 

difficulty is that photons are easily lost due to absorption or scattering. This leads 

to computational errors. Of course, all quantum computation schemes need to battle 

errors and powerful error correction codes have been developed for many schemes 

including photonic. 

Photonic schemes are of two general kinds depending how a qubit is encoded in the 

physical states of an optical mode. This encoding needs to be adapted to the particular 

qubit measurement scheme. If the measurement is based on photon counting, the 

measurement results are integers (a count) and the scheme is called discrete. If the 

measurement is based on homodyne/heterodyne detection, the measurement results 

are real numbers. This is called continuous variable quantum computing. We will 

begin with the discrete case. 

15.2 Photon Boson Sampling 

The Hong-Ou-Mandel (HOM) two-photon interference discussed in Sect. 1.9 is a 

hint of the much deeper complexity at the core of multi-photon interference in linear 

optical interferometers. This was made explicit in the discovery of photonic boson 

sampling by Scott Aaronson and Alex Arkhipov in 2013 [ 7]. 

In Fig. 15.2 we show a general liner optical unitary transformation with an 

unknown product number state and known number states (ancilas). |n〉 = |n1〉|n2〉 . . .  

|nk〉 at input. A photon counter records a count record .m = (m1, m2, . . .  nm ) for the 

last . k modes. The linear optical device performs a unitary transformation on all the 

input states. It may be described by a unitary transformation of the form 

.U (H) = exp[−ia† Ha] (15.6) 
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Fig. 15.2 A conditional linear optical gate 
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(15.7) 

and .H is a hermitian matrix. This transformation leaves the total photon number 

invariant, 

.U †(H )a† · aU (H) = a
† · a (15.8) 

It also induces a linear unitary transformation on the vector . a as 

.U †(H)aU (H) = S(H)a (15.9) 

One should not confuse the unitary transformation, .U (H ), acting on states, with the 

induced unitary representation, .S(H ), acting on the mode operators. 

The conditional state of the signal modes, .|ψ ′〉 are then determined by 

.|ψ ′〉s =
1√
p(m) 

Ê(n|m)|ψ〉s (15.10) 

where the observed count is represented by the vector of values. m, and the probability 

for this event is .p(m). The measurement operator is 

. Ê(n|m) = anc〈m|U (H )|n〉anc (15.11) 

with 

.|m〉anc = |m1〉N+1 ⊗ |m2〉N +2 ⊗ . . .  ⊗ |mk〉N+K (15.12) 
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We will first calculate how coherent states transform under this process. Define 

.|α〉 = |α1〉 ⊗ |α2〉 ⊗  . . .  |αN +K 〉 (15.13) 

where 

.α = 
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(15.14) 

Then 

.U (H )|α〉 = |α(H )〉 = |α1(H)〉 ⊗ |α2(H )〉 . . .  |αN+K (H )〉 (15.15) 

where .α(H ) = S†(H )α , reflecting the well known fact that coherent states do not 

become entangled through a linear optical transformation of the kind considered 

here. The matrix element, 

.UH (α) = 〈α|U (H )|α〉 = 〈α||U (H)||α〉e−α
†·α (15.16) 

completely determines the operator .U (H ), and the Bargmann coherent states are 

.||α〉 =  ea
†.α|0〉 (15.17) 

which are related to Glauber coherent states by .|α〉 =  exp[−α
†.α/2]||α〉. 

Consider two modes, .a1, a2, coupled with 

.H =
(

0 θ 

θ 0

)

(15.18) 

then the transformation is parameterised by a single parameter, . θ and 

.a1(θ ) = cos θa1 − sin θ a2 (15.19) 

.a2(θ ) = cos θa2 − sin θ a1 (15.20) 

so that 

.S(H ) =
(

cos θ sin θ 

− sin θ cos θ

)

(15.21) 

Then we see that 

. UH (α1, α2) = e−(|α1|2+|α2|2) exp[(|α1|2 + |α2|2) cos θ + (α∗
2 α1 − α∗

1 α2) sin θ ] 
(15.22) 
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Due to the over completeness of the coherent state basis, this diagonal matrix element 

suffices to completely determine the operator. We will call this diagonal matrix 

element the Q-symbol. 

We now assume that photons are counted on mode.a2 and calculate the conditional 

state for mode .a1 for the four cases: .n = 0, 1 and .m = 0, 1. The conditional state of 

mode .a1 is given by, 

.|ψ (n,m)〉1 =
1√

p(m|n) 
Ê(n|m)|ψ〉1 (15.23) 

where 

.p(m|n) = 1〈ψ | Ê†(n|m) Ê(n|m)|ψ〉1 (15.24) 

The Q-symbol for the operator . Ê(n|m) is 

.E(α1|n, m) = e−(|α1|2+|α2|2) × (15.25)
(

∂ 

∂α∗
2

)m (

∂ 

∂α2

)n
[

exp[(|α1|2 + |α2|2) cos θ 

+(α∗
2 α1 − α∗

1 α2) sin θ ]
]

∣

∣

∣

α2=0 

The corresponding operators are 

. Ê(0|0) = 

∞
∑

n=0 

(cos θ − 1)n 

n! (a
† 
1 )

nan 1 =: e−ln(cos θ)a
† 
1a1 : 

Ê(1|1) = cos θ Ê(0|0) − sin2 θa
† 
1 Ê(0|0)a1 

Ê(1|0) = −a
† 
1 sin θ Ê(0|0) 

Ê(0|1) = sin θ Ê(0|0)a1 

The generalisation to many modes is straightforward. It is easy to see that the 

Q-symbol for a general .U (H ) is given by 

.UH (α) = exp [−α
† · α] exp[α†S†(H)α] (15.26) 

The Q-symbol for the measurement operator in (15.10) as  

.EH (αs |n, m) = s〈αs | Ê(n|m)|αs〉s (15.27) 

where 

.αs = 

⎛ 

⎜

⎜

⎜

⎝ 

α1 

α2 

... 

αn 

⎞ 

⎟

⎟

⎟

⎠

(15.28) 
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where the subscript . s refers to the signal modes alone. 

Noting that 

.|n〉 =  
1√
n!

(

∂ 

∂α

)n 

||α〉
∣

∣

∣

∣

α=0 

(15.29) 

and that the partial derivatives commute with .U (H), we find  

.EH (αs |n, m) = e−α
† 
s ·αs

[

mN +1! . . .  mN +K !nN+1! . . .  nN+K !
]−1/2 

(15.30)
[(

∂∗
N +1

)mN+1 . . .
(

∂∗
N +K

)mN+K 

× (∂N +1)
nN+1 . . .  (∂N +K )

nN+K exp[α†S†(H )α]
]

∣

∣

∣

αanc=0 

where 

.αanc = 
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⎜

⎜
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αN +1 

αN +2 
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αN+K 
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⎟

⎟

⎟

⎠

(15.31) 

and 

. ∂∗
n =

∂ 

∂α∗
n 

∂n =
∂ 

∂αn 

This expression enables us to construct the relevant Q-symbol for the conditional 

state transformation by expanding the function .UH (α) as a power series and reading 

off the relevant coefficient. This function thus plays the role of a Feynman prop-

agator in ordinary quantum mechanics. If it is expanded as a Taylor series, each 

term describes the many ways in which a classical coherent amplitude can prop-

agate through the linear optical network, keeping track of the manyfold coherent 

amplitudes for reflection and transmission. 

The case of Boson sampling is a special case of this with the input state such 

that all signal modes have exactly one photon each and all ancilla modes are in the 

vacuum, see Fig. 15.3. The output state is 

.|ψout 〉 =
∑

C 

γC |nC 〉 (15.32) 

where .C is a configuration of .|nC 〉 = |n(C) 
1 , n

(C) 
2 , . . . ,  n

(C) 
m 〉. This is an m-fold par-

tition of the integer . n into partial sums 

.n = 

m
∑

j=1 

n
(C) 
j (15.33) 
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Fig. 15.3 A boson sampling configuration of a linear optical network 

The probability for a particular configuration is .PC = |γC |2. The connection to par-
titions can be used to show that 

.γC =
Per(S)C

√

n
(C) 
1 ! . . .  n

(C) 
m ! 

(15.34) 

where .Per(S)C is the permanent of the .n × n sub-matrix of .S(H). Unless you know 

some number theory, you may be surprised to learn that permanents, unlike deter-

minants, are computationally hard. Calculating matrix permanents is .#P-complete. 

This is even more intractable than NP-complete problems. This suggests that the 

most efficient way to compute a permanent is to set up a linear optical analogue 

experiment. 

In what sense is an analogue experiment like this a computation of a permanent? 

The permanent determines a probability. How many trials would we need to perform 

to sample a probability to estimate the permanent? Any experiment is finite and prone 

to errors. How sure can we be that an estimated probability in a finite experiment 

will actually be a good estimate of the permanent—by definition a known function 

of the corresponding matrix. The number of configurations . C is 

.N [C] =
(

n + m − 1 

n

)

(15.35) 

This is super-exponential in. n. In a finite experiment we cannot sample this efficiently 

except in special cases. The conclusion is that we cannot use boson sampling to 

calculate a permanent. Despite the apparent complexity of linear optical experiments 

of this kind , there is no known practical application of boson sampling. 



15.3 Photon Number Quantum Computation 279 

15.3 Photon Number Quantum Computation 

In the interferometric implementation of Deutsch algorithm we used a simple phys-

ical qubit based on a single photon pulse of one of a pair of spatio-temporal modes 

(pulses). This is know as a “dual rail” logic. Single photon pulses were described in 

Sect. 1.9, 

.|ξ j 〉 =
∫ ∞ 

−∞ 

dω ξ̃ (ω)a
† 
j (ω)|0〉 (15.36) 

where .k j labels a particular spatial mode. We will drop the explicit reference to 

.ξ̃ (ω)  as we assume that all single photon pulses are prepared in the same temporal 

mode and write .|ξ j 〉 = |1〉 j . The relationship between logical states and the physical 
photon number state is 

.|0〉L = |1〉1 ⊗ |0〉2 =
∫ ∞ 

−∞ 

dω ξ̃ (ω)a
† 
1 (ω)|0〉 (15.37) 

.|1〉L = |0〉1 ⊗ |1〉2 =
∫ ∞ 

−∞ 

dω ξ̃ (ω)a
† 
2 (ω)|0〉 (15.38) 

The modes could be two input modes to a beam splitter distinguished by the different 

directions of the wave vector, or they could be distinguished by polarisation. In 

the case of a beam splitter a single qubit gate is easily implemented by the linear 

transformation 

.ai (ω, θ ) = U (θ )†ai (ω)U (θ ) (15.39) 

In order to simplify the notation we drop the explicit frequency dependance from 

now on but it must be kept in mind that these are defined in frequency space and 

have the delta function commutation relations for the free field. We write . U (θ ) = 

exp
[

θ(a1a
† 
2 − a

† 
1a2)

]

. Thus 

.a1(θ ) = cos θa1 − sin θ a2 (15.40) 

.a2(θ ) = cos θa2 + sin θ a1 (15.41) 

In the case of a pulse-mode fibre coupler, .a
† 
i creates a single-photon pulse in a single 

mode fibre labelled by subscript . i , see Fig. 15.4. The description in the logical basis 

becomes, 

.|0〉L → cos θ1|0〉L − sin θ1|1〉L (15.42) 

.|1〉L → cos θ1|1〉L + sin θ1|0〉L (15.43) 

While single qubit gates are readily implemented by linear optical devices such as 

beam splitters, quarter wave plates, phase shifters etc., two qubit gates are difficult. 

In order to implement the controlled phase gate (CSIGN) defined by 

.|x〉L |y〉L → UCP |x〉L |y〉L = (−1)x .y |x〉L |y〉L (15.44) 
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Fig. 15.4 An optical realisation of a CZ gate with dual rail photonic encoding. The final single 

photon counters make a measurement of the qubit in the computational basis as they determine 

which rail has a photon. In the case of a correctly running CZ gate, the probability to detect a 

photon in the upper arm at each output is 1 

In a dual rail, single photon code, this can be implemented using a two mode Kerr 

nonlinearity. A simple nonlinear optical model of a Kerr nonlinearity was discussed 

in Chap. 8 in relation to optical bistability. The two mode generalisation is described 

by the Hamiltonian 

.H = �χa
† 
1a1a

† 
2a2 (15.45) 

At the level of single photons this Hamiltonian produces the transformation,. |x〉|y〉 →  

e−i xyχ t |x〉|y〉 and it is a simple matter to implement the CSIGN gate in the log-

ical basis for the dual rail single photon code. The optical circuit is illustrated in 

Fig. 15.4. While this gate does not change the total photon number in each pulse 

because the Kerr interaction is photon number conserving, it does change the tem-

poral shape in each pulse due to quantum phase back-action. 

There are at least two problems in pursuing this approach; (a) the difficulty of 

realising number states in the laboratory, (b) the difficulty of producing one photon 

phase shifts of the order of . π . We will say more about the fist of these problems 

below. The second difficulty is very considerable. Third order optical nonlinearities 

are very small for a field with such a low intensity as a single photon. However 

experimental advances may eventually overcome this. 

A quite different approach to achieve large single photon conditional phase shifts 

is based on the non-unitary transformation of a state that results when a measurement 

is made. Consider the situation shown in Fig. 15.5. Two modes of an optical field 

are coupled via a beam splitter. One mode is assumed to be in the vacuum state (a) 

or a one photon state (b), while the other mode is arbitrary. A single photon counter 

is placed in the output port of mode-2. What is the conditional state of mode-1 given 

a count of . n photons? 
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Fig. 15.5 A conditional state transformation conditioned on photon counting measurements. In 

case . a an optical pulse in an arbitrary quantum state is injected into the top rail and vacuum is 

applied at the bottom rail. The conditional state of the bottom rail, given no photons are counted in 

the top rail is .|ψ (0〉. In case . b an optical pulse in an arbitrary quantum state is injected into the top 

rail and a single photon pulse (not a logical qubit state) is injected at the bottom rail. The conditional 

state of the bottom rail, given one photon is counted in the top rail is . |ψ (1)〉

Consider two modes, .a1, a2, coupled with a beam splitter interaction, described 

by the unitary transformation given in (15.40, 15.41). We now assume that photons 

are counted on mode.a2 and calculate the conditional state for mode.a1 for two cases: 

no count and also for a single count at mode . a2. The conditional state of mode .a1 is 

given by (unnormalised), 

.| ψ̃ (i)〉1 = ϒ̂(i )|ψ〉1 (15.46) 

where 

. ϒ̂(i ) = 2〈i |U (θ )|i〉2 (15.47) 

with .i = 1, 0. The probability to observe each event is given by 

.P(i ) = 〈ψ |ϒ†(i ) ϒ̂(i)|ψ〉1 (15.48) 

which fixes the normalisation of the state, 

.|ψ (i)〉1 =
1√
P(i ) 

| ψ̃ (i )〉1 (15.49) 

In Exercise 15.4 we find that 

. ϒ̂(0) = 

∞
∑

n=0 

(cos θ − 1)n 

n! (a
† 
1 )

nan 1 

ϒ̂(1) = cos ϒ̂ (0) − sin2 θa
† 
1 ϒ̂

(0)a1 

This can be written more succinctly using normal ordering, 

. ϒ̂(0) =: eln(cos θ)  : (15.50) 
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Fig. 15.6 A conditional state transformation on three optical modes, conditioned on photon count-

ing measurements on the ancilla modes .a1, a2. The signal mode, .a0 is subjected to a .π phase 

shift 

In order to see how we can use these kind of transformations to effect a CSIGN 

gate, consider the situation shown in Fig. 15.6. Three optical modes are mixed on a 

sequence of three beam splitters with beam splitter parameters. θi . The ancilla modes, 

.a1, a2 are restricted to be in the single photon states .|1〉1, |0〉2 respectively. We will 

assume that the signal mode, . a0, is restricted to have at most two photons, thus 

.|ψ〉 =  α|0〉0 + β|1〉0 + γ |2〉0 (15.51) 

This captures the fact that in the dual rail encoding a general two qubit state can have 

at most two photons. The objective is to chose the beam splitter parameters so that 

when the two detectors at the output of modes .2, 3 detect .1, 0 photons respectively 

(that is detect no change in their occupation), the signal state is transformed as 

.|ψ〉 → |ψ ′〉 =  α|0〉 +  β|1〉 −  γ |2〉 (15.52) 

with a probability that is independent of the input state .|ψ〉. This last condition 
is essential as in a quantum computation, the input state to a general two qubit 

gate is completely unknown. We will call this transformation the NS (for non-

linear sign shift) gate. In Exercise 15.6 we find that this can be achieved using: 

.θ1 = −θ3 = 22.5 deg  and .θ2 = 65.53 deg. The probability of the conditioning event 

(.n2 = 1, n3 = 0) is  .1/4. Note that we can’t be sure in a given trial if the correct 

transformation will be implemented. Such a gate is called a nondeterministic gate. 

However the key point is that success is heralded by the results on the photon counters 

(assuming ideal operation). 

We can now proceed to a CZ gate in the dual rail basis. Consider the situation 

depicted in Fig. 15.7. We first take two dual rail qubits encoding for .|1〉L |1〉L . The 
single photon components of each qubit are directed towards a 50/50 beam splitter 

where they overlap perfectly in space and time. This is precisely the case of the 

Hong-Ou-mandel interference discussed in Sect. 1.9, and produces a state of the 

form .|0〉2|2〉3 + |2〉2|0〉3. We then insert an NS gate into each output arm of the 

HOM interference. When the conditional gates in each arm work, which occurs with 
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Fig. 15.7 A conditional state transformation conditioned on photon counting measurements. A CZ 

gate that works with probability of 1/16. It uses HOM interference and two NS gates 

probability .1/16, the state is multiplied by an overall minus sign. Finally we direct 

these modes towards another HOM interference. The output state is thus seen to be 

.−|1〉L |1〉L . One easily checks the three other cases for the input logical states to see 
that this device implements the CZ gate with a probability of .1/16 and successful 

operation is heralded. We call this the .CZ1/16 gate. 

Clearly a sequence of nondeterministic gates is not going to be much use: the 

probability of success after a few steps will be exponentially small. The key idea in 

using nondeterministic gates for quantum computation is based on the idea of gate 

teleportation of Gottesmann and Chuang [ 11]. We saw in Sect. 14.5 that in quantum 

teleportation an unknown quantum state can be transferred from A to B provided 

A and B first share an entangled state. Gottesmann and Chuang realised that it is 

possible to simultaneously teleport a two qubit quantum state and implement a two 

qubit gate in the process by first applying the gate to the entangled state that A and 

B share prior to teleportation. 

We use a non deterministic NS gate to prepare the required entangled state, and 

only complete the teleportation when this stage is known to work. The teleportation 

step itself is non deterministic but, as we see below, by using the appropriate entangled 

resource the teleportation step can be made near deterministic. The near deterministic 

teleportation protocol requires only photon counting and fast feed-forward. We do 

not need to make measurements in a Bell basis which would require entangling 

operations that cannot be done using linear optics alone. 

A nondeterministic teleportation measurement is shown in Fig. 15.8. The client 

state is a one photon state in mode-.0 .α|0〉0 + β|1〉0 and we prepare the entangled 
ancilla state 

.|t1〉12 = |01〉12 + |10〉12 (15.53) 

where mode-. 1 is held by the sender, A, and mode-. 2 is held by the receiver, B. For 

simplicity we omit normalisation constants wherever possible. This an ancilla state 

is easily generated from .|01〉12 by means of a beam splitter. 



284 15 Quantum Optical Computation 

Fig. 15.8 A partial teleportation scheme (.T1/2) for single photon states using linear optics 

If the total count is .n0 + n1 = 0 or .n0 + n1 = 2, an effective measurement has 

been made on the client state and the teleportation has failed. However if . n0 + n1 = 

1, which occurs with probability .0.5, teleportation succeeds with the two possible 

conditional states being 

.α|0〉2 + β|1〉2 if n0 = 1, n1 = 0 (15.54) 

.α|0〉2 − β|1〉2 if n0 = 0, n1 = 1 (15.55) 

This procedure implements a partial bell measurement and we will refer to it as 

a nondeterministic teleportation protocol, .T1/2. Note that teleportation failure is 

detected and corresponds to a photon number measurement of the state of the client 

qubit. Detected number measurements are a very special kind of error and can be 

easily corrected by a suitable error correction protocol. For further details see [ 4]. 

The next step is to use.T1/2 to effect a conditional sign flip.csign1/4 which succeeds 

with probability .1/4. Note that to implement .csign on two bosonic qubits in modes 

.1, 2 and .3, 4 respectively, we can first teleport the first modes of each qubit to two 

new modes (labelled . 6 and . 8) and then apply .csign to the new modes. When using 

.T1/2, we may need to apply a sign correction. Since this commutes with .csign, there 

is nothing preventing us from applying .csign to the prepared state before performing 

the measurements. The implementation is shown in Fig. 15.9 and now consists of first 

trying to prepare two copies of .|t1〉 with .csign already applied, and then performing 

two partial Bell measurements. Given the prepared state, the probability of success is 

.(1/2)2. The state can be prepared using .csign1/16, which means that the preparation 

has to be retried an average of .16 times before it is possible to proceed. 

To improve the probability of successful teleportation to .1 − 1/(n + 1), we gen-

eralise the initial entanglement by defining 

.|tn〉1...2n = 

n
∑

j=0 

|1〉 j |0〉n− j |0〉 j |1〉n− j . (15.56) 
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Fig.15.9 A CZ two qubit gate with teleportation to increase success probability to.1/4. When using 

the basic teleportation protocol (T1), we may need to apply a sign correction. Since this commutes 

with CZ, it is possible to apply CZ to the prepared state before performing the measurements, 

reducing the implementation of CZ to a state-preparation (outlined) and two teleportations. The 

two teleportation measurements each succeed with probability 1/2, giving a net success probability 

of 1/4. The correction operations C1 consist of applying the phase shifter when required by the 

measurement outcomes 

The notation .|a〉 j means .|a〉|a〉 . . ., . j times. The modes are labelled from . 1 to .2n, 

left to right. Note that the state exists in the space of . n bosonic qubits, where the . k’th 

qubit is encoded in modes .n + k and . k (in this order). 

To teleport the state .α|0〉0 + α|1〉0 using .|tn〉1...2n we first couple the client mode 

to half of the ancilla modes by applying an .n + 1 point Fourier transform on modes 

. 0 to . n. This is defined by the mode transformation 

.ak →
1√
n + 1 

n
∑

l=0 

ωklal (15.57) 

where .ω = ei2π/(n+1) This transformation does not change the total photon number 

and is implementable with passive linear optics. After applying the Fourier transform, 

we measure the number of photons in each of the modes . 0 to . n. If the measurement 

detects . k bosons altogether, it is possible to show [ 4] that if .0 < k < n + 1, then the 

teleported state appears in mode .n + k and only needs to be corrected by applying a 

phase shift. The modes .2n − l are in state . 1 for .0 ≤ l < (n − k) and can be reused 

in future preparations requiring single bosons. The modes are in state . 0 for . n − k < 

l < n. If .k = 0 or .k = n + 1 an effective measurement of the client is made, and the 

teleportation fails. The probability of these two events is .1/(n + 1), regardless of 

the input. Note that again failure is detected and corresponds to measurements in the 

basis .|0〉, |1〉 with the outcome known. Note that both the necessary correction and 

the receiving mode are unknown until after the measurement. The success probability 

of the teleported CZ gate can thus be boosted to .n2/(n + 1)2. 
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A number of LOQC protocols have been implemented in the laboratory. The 

first experiment was performed by Pittmann and Franson [ 15]. This used entangled 

ancillas that are readily produced as photon pairs in a spontaneous parametric down 

conversion process. This idea was subsequently used to develop fusion gates for 

optical QC discussed below. 

A simplified version of the LOQC model was implemented by O’Brien et al. 

[ 16], based on a proposal of Ralph et al. [ 17] for a CNOT gate. The simplification 

requires only detecting photon coincidences at the output. This gate performs all the 

operations of a CNOT gate but requires only a two photon input. Detecting only 

coincidences means that the device must be configured so that correct operation 

leads to a coincidence detection of both photons at the output. The gate is non 

deterministic but gate failures are simply not detected at all. Successful operation 

is heralded by coincidence detection of both photons and success will occur with 

probability .1/9. In the UQ experiment the two modes of each qubit are distinguished 

by orthogonal polarisations. The advantage in using a gate based on two photon 

coincidence detection is that spontaneous parametric down conversion (SPDC) may 

be used in place of true single photon sources. An SPDC produces a photon pair in 

two distinct spatio-temporal modes at random times. There is a small probability of 

producing more than two photons, but this can be neglected. 

It is possible to do quantum computation with single photon pulses using heralded 

non unitary operations, the probabilistic nature of the process means that many 

trials need to be made. This leads to an explosion in the number of beam splitters 

and counters required to do even simple gates. One way to reduce the resource 

count was proposed by Neilsen using cluster states and measurement based quantum 

computation MBQC [ 12]. The cluster state model was developed by Raussendorf and 

Breigel [ 13] and is quite different from the circuit models that we have been using. In 

cluster state QC, an array of qubits is initially prepared in a special entangled state. 

The computation then proceeds by making a sequence of single qubit measurements. 

Each measurement is made in a basis that depends on prior measurement outcomes. 

Nielsen realised that the LOQC scheme discussed above could be used to efficiently 

assemble the cluster using the nondeterministic teleportation . tn . The failure mode 

of this gate constituted an accidental measurement of the qubit in the computational 

basis. Such an error does not destroy the entire assembled cluster but merely detaches 

one qubit from the cluster. This enables a protocol to be devised that produces a 

cluster that grows on average. The LOQC cluster state method dramatically reduces 

the number of optical elements required to implement the original LOQC scheme. For 

example, the KLM CZ gate with 95% success probability requires.∼1014 operations! 

15.3.1 Fusion Gates 

A breakthrough in simplifying linear optics quantum computation with single pho-

tons when Browne and Rudolph [ 6] combined cluster state measurement based quan-

tum computation with the gate of Pitmann and Franson to build operations that can 

fuse small clusters into large ones. The first step is to consider a simple implemen-
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tation of a different approach to quantum computation called measurement based 

quantum computation (MBQC) [ 8]. 

Consider a two-dimensional array of qubits shown below. Each qubit at a vertex 

is prepared in the physical qubit/photon state .|+〉 = (|0〉 + |1〉)/
√
2. We then apply 

a CZ (CPHASE) gate between each vertex connected by an edge. For example 

. CZ12CZ23CZ34| + + + +〉 =  
1 

2 
(|0 + 0+〉 + |0 − 1−〉 + |1 − 0+〉 + |1 + 1−〉) 

(15.58) 

We have ordered the qubit states so that the corresponding label increases from 

left to right. We now regard each row of a cluster as one logical qubit. The notion 

.CZ  jk  means that the unitary operator .exp[iπ Z j Zk] is applied to the pair of qubits 
labelled . jk. We have introduced a more compact notation for Pauli matrices so that 

.X = σx , Y = σy, Z = σz and . Z is diagonal in the qubit basis. 

When we make independent Pauli measurements on the physical qubits labelled 

.2, 3, there are four possible outcomes. Label the outcomes .s2, s3 ∈ {0, 1}. These 
then label the conditional states of physical qubits .1, 4. As an example suppose we 

measure .σx on physical qubits .2, 3 and further that .s2 = 1, s3 = 1, corresponding 

to finding these two physical qubits both in state .+〉. Inspection of (15.58) gives the 
corresponding conditional state of physical qubits .1, 4 as 

.|ψ〉24 = |0+〉 + |1−〉 s2 = s3 = 1 (15.59) 

(We are ignoring the normalisation to simplify the notation). The conditional transfor-

mation for the physical qubits on the right hand column from pre to post measurement 

state is 

.| + +〉 =  (H ⊗ I + I ⊗ HZ)| + +〉 (15.60) 

Of course the measured qubits now factor out of the cluster state, and are no longer 

entangled with physical qubits .1, 4. Measured physical qubits are deleted from the 

cluster state. 

We now adopt a more abstract notation that distinguishes physical qubits from 

logical qubits. We regard the physical qubits in each horizontal line as encoding a 

logical qubit. In this example, this gives two logical qubits initially prepared in the 

state .| + +〉L . After the measurement there are only two physical qubits in each row 

of the cluster and the state in this example is given by (15.60) . (H ⊗ I + I ⊗ HZ)| +  

+〉L . Thus the transformation of logical qubits, given these particular measurement 

outcomes, is 

.| + +〉L → (H ⊗ I + I ⊗ HZ  )| + +〉L (15.61) 

In this case the cluster has simulated a particular circuit on the two logical qubits. 

Working through the other three possible measurement outcomes we find that in 

general the circuit for logical qubits is shown in Fig. 15.11. 

Using LOQC we need to be able to assemble cluster states non deterministically 

as we do not have a deterministic CZ gate. This can be done using the teleported non 

deterministic gate .CZn2/(n+1)2 described previously. Nielsen [ 5] adapted this gate 
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Fig. 15.10 A simple two dimensional cluster of entangled qubits. Vertices label qubits and edges 

show which pairs are entangled. We now regard each row of a cluster as one logical qubit 

Fig.15.11 The cluster state simulation using the graph in Fig. 15.10 of a simple gate for two logical 

qubits. The operators .Rz (θ ) represent rotations about the . Z axis. The values used for .θ j depend on 

the outcomes for measurements on physical qubits . 2, 3 

to make cluster states non deterministically. In the case of a general two qubit CZ 

gate, he showed that each physical qubit in a cluster has at most one vertical edge. 

We connect another physical qubit by one horizontal and one vertical edge using 

requires two successful .CZ4/9 gates. He showed that for.n = 2 this requires less than 

70 beam splitters, 30 photodetectors, and 12 single-photon preparations. 

Nielsen showed how to build the cluster non deterministically using two types 

of operation: add a qubit connected to the current cluster by a single bond, and 

attempting to add a qubit connected by a double bond. Any cluster can be built up 

by alternating these operations. Operations of the first kind can be done using the 

.CZ4/9. Two key features of the procedure are: failure does not change the rest of the 

cluster, and a cluster of size .S(n) can be grown with about .9S(n) attempts. 

Browne and Rudolph (BR) [ 6] substantially improved Nielsen’s scheme using 

the non deterministic gate of Pittman and Franson. In BR we code physical qubits 

as single photons in polarisation modes. .(H → 0, V → V ) and use polarisation 

rotations to measure qubits in arbitrary basis. Instead of CZ gates between clusters 

they use probabilistic fusion gates described by a fusion operation .|0〉〈00| + |1〉〈11|. 
This replaces two qubits with a single qubit while retaining all cluster state bonds 

on each qubit. The important insight was that this would enable LOQC schemes 

to dispense with gate teleportation and use instead resource states of the form of 

photonic Bell pairs 
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.|C2〉 =  
1 

2 
[|H〉(|H〉 + |V 〉) + |V 〉(|H〉 − |V 〉)] (15.62) 

These are two qubit clusters .|0+〉 + |1−〉 with polarisation mode encoding . |H〉 →  

|0〉, |V 〉 → |1〉. These states can be generated by spontaneous parametric down 

conversion, see Sect. 4.2. 

We use Fock state pulses of four distinct modes. Each spatio-temporal mode is 

labelled by wave vectors .k1, k2 and two orthogonal polarisation vectors, .H , V . Now  

define four pairs of annihilation and creation pairs . (a1, a
† 
1 ), (a2, a

† 
2 ), ( ̄a1, ā

† 
1 ), (ā2, 

ā
† 
2 ), such that 

.a
† 
j |vac〉 = |H〉 j (15.63) 

.ā
† 
j |vac〉 = |V 〉 j (15.64) 

where .|vac〉 is the four mode vacuum state. In the experiments we will describe the 

spatio-temporal modes are Fock state pulses in waveguides labelled by . j . (Recall 

that our notion explicitly assumes these are frequency space operators .a j (ω).) We 

do not specify the temporal pulse shape .ξ j (t) for each wave guide as they are all 

the same. This is in fact defined by a suitably engineered single photon source. The 

cluster state in (15.62) can now be written as 

.|C2〉 =  
1 

2

[

a
† 
1 (a

† 
2 + ā

† 
2 ) + ā

† 
1 (a

† 
2 − ā

† 
2 )

]

|vac〉 (15.65) 

We first discuss type-1 non deterministic fusion operation shown in Fig. 15.12 

This uses a polarising beam splitter that enables us to direct orthogonally polarised 

photonic pulses in different directions. We will take the convention that vertically 

polarised photons are reflected and horizontally polarised photons are transmitted. 

The PBS thus implements the following unitary transformation in the Heisenberg 

picture 

.a j → a j (15.66) 

ā1 → ā2, ā2 → ā1 (15.67) 

In Fig. 15.12, there is one photon in each input and so there are four possible 

output counts .(n1, n2) ∈ (1, 1), (2, 0), (0, 2). The case .(1, 1) can occur in two 

indistinguishable ways depending on the input state, .|HH〉 or .|VV 〉. The last two 
cases correspond to the input states.|HV 〉 and.|V H〉 respectively. A single count will 
occur .50% of the time. The count .n2 = 0, 2 is a heralded failure and is discarded. 

Thus the success probability is .50%. The transformation of the cluster state by the 

PBS is given by 

.|C2〉 →  
1 

2

[

a
† 
1a

† 
2 − ā

† 
1 ā

† 
2

]

|vac〉 +  
1 

2

[

a
† 
1 ā

† 
1 + a

† 
2 ā

† 
2

]

|vac〉 (15.68) 
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Fig. 15.12 A type-1 non deterministic fusion operation using single photon pulses at a polarising 

beam splitter (PBS) and conditioning on single photon detection events. We label spatial modes by 

wave vectors .k1 for top waveguide modes and .k2 for bottom waveguide modes. We label polarised 

two-photon states as an ordered symbol string, for example, .|HV 〉 = |1〉k1,H ⊗ |1〉k2,V . Prior  to  

detection, an optical element rotates the polarisation by . π/4 

The second term is the component that leads to a total count of .n2 = 2 or .n2 = 0 at 

the detector. We therefore drop this term as we only condition from single photon 

detection events determined by the state 

.|ψ (1)〉 =  
1√
2

[

a
† 
1a

† 
2 − ā

† 
1 ā

† 
2

]

|vac〉 (15.69) 

The counter has two output channels that discriminate orthogonal polarisations 

of the single photon counted. This occurs after the .π/4 polarisation rotation that 

implements the unitary transformation on mode .k1 alone 

.a1 → 
1√
2 
(a1 + ā1) (15.70) 

.ā1 → 
1√
2 
(a1 − ā1) (15.71) 

The state in the single photon sector is then transformed to 

.|ψ (1)〉 →  
1 

2

[

(a
† 
1 + ā

† 
1 )a

† 
2 − (a

† 
1 − ā

† 
1 )ā

† 
2

]

|vac〉 (15.72) 

. = 1 

2 
[(|H〉 + |V 〉)|H〉 −  (|H〉 − |V 〉)|V 〉] (15.73) 

If the single photon counter is engineered to discriminate between.H /V polarisation, 

there are two conditional states are 

.|φ(±)〉 =  
1√
2 
(|H〉 ± |V 〉) ⊗ |vac〉 (15.74) 
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Fig. 15.13 A scheme for fusing two Bell pair clusters to produce a three node cluster. At the right 

we give a graphical representation of the process. When fusion fails it has the effect of measuring 

both input qubits in the .σz basis 

Fig. 15.14 Adding a polarisation entangled Bell pair to an existing polarisation encoded qubit 

cluster 

depending on which polarisation channel registers the count. We treat the photon 

detection as an absorption event which returns mode.k2 to the vacuum state. It doesn’t 

matter which of these we get as they differ by a local .σz which can be included in 

the control protocol. If we have two Bell pairs, i.e. two qubit cluster states, we can 

use type-1 fusion to get a three qubit cluster state. Let us begin with the Bell pair 

.|C2〉12 ⊗ |C2〉34 where there are now four polarised single photon pulses, see Fig. 
15.13. As this operation is only .50% successful, we use four Bell pairs, on average, 

to create a three qubit cluster. We can use this operation to add a Bell pair to an 

existing linear cluster state, see Fig. 15.14. T On average, the length of cluster does 

not increase. On average cluster increases by half qubit. To add one qubit to the 

cluster need .2 × 4 − 1 = 7 Bell pairs. Thus, .6.5 Bell pairs per added qubit. 

We also need to be able to grow two-dimensional clusters from linear clusters. 

We seem to be heading in the right direction however type-1 fusion is only 50% 

successful. Failure is equivalent to .σz measurement and this breaks a bond. To get 

around this the type-II fusion gate can be used. These use a two Bell pairs for a 

resource state. This is depicted in Fig. 15.15. Successful operation is heralded by 

a single count at each photon counter. Failure is indicated if there are no photons 

detected at one of the counters. In order to understand how this can be used, BR 

introduced a photonic redundant encoding. This uses polarised multi-photon pulses 

to encode a qubit. For example, 

.|0〉L = a
† 
1a

† 
2 |0〉 ≡ |H〉⊗2, |1〉L = ā

† 
1 ā

† 
2 |0〉 ≡ |V 〉⊗2 (15.75) 
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Fig. 15.15 A type-II fusion gate. Successful operation is heralded by a simultaneous single photon 

detection event at each photon counter 

A single qubit in the cluster state may be represented by two photons and a 

generic cluster state by .|φ〉0 ⊗ |0〉L + |φ〉1 ⊗ |1〉L where we have singled out from 

the rest of the cluster the particular qubit which is redundantly encoded with two 

photons. If we measure the polarisation of the second photon in the .|H〉 ± |V 〉 basis, 
a .σxmeasurement, of the redundant logical qubit, it simply removes this photon but 

does not destroy the cluster, up to a phase shift. Returning to the type-II fusion gate 

in Fig. 15.15, we see that failure corresponds to an accidental .σx measurement on 

one of the photons in each of the redundantly encoded qubits at the input. Provided 

we start with enough photons in the redundant qubit we can try the gate many times 

until success. 

If we want to ‘knit’ two linear clusters together to form a two-dimensional cluster, 

we ensure that somewhere in the chain of pulses in each chain there is a .N photon 

pulse. We can then apply a type-II fusion gate between those redundantly encoded 

qubits. This is illustrated in Fig. 15.16. 
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Fig. 15.16 An example of a two dimensional cluster state, with redundantly encoded qubits 

15.4 Continuous Variable (CV) Optical Quantum Computation 

Encoding a qubit in single-photon pulses is not the only way to use optical switching 

networks for quantum computation. We can use single pulses prepared in squeezed 

states, cat states or GKP states (see Sect. 1.8). An MBQC protocols can then be used 

with linear optics to do universal quantum computation. 

An important theorem for CV quantum computation was presented by Braunstein 

and Lloyd [ 21]. What kinds of Hamiltonians are capable of generating an arbitrary 

state of a single optical mode? In terms of the corresponding unitaries we can ask the 

equivalent question about the generators of the unitary. In addition to displacements 

and squeezing unitaries it turns out that we need a unitary with a generator that 

is at least cubic in the annihilation and creation operators. The opto-mechanical 
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Fig. 15.17 The probability distribution for .|0̃〉 (left) and .|1̃〉 (right) in the diagonal representation 
of .X1 = a + a† with . r = −1.2, �̃ = 0.01 

interaction in Chap. 7 is an example. Another is a Kerr nonlinearity in Sect. 4.2. 

These unitaries in suitable sequences can create an arbitrary single mode state. These 

states are typically non classical in so far as they do not have Glauber-Sudarshan P 

representations. Another way to pose the question is to ask for the class of unitaries 

that transform states with Gaussian wave functions for quadrature phase operators 

into each other. 

The first CV encoding scheme in the context of encoding a qubit in the states of 

a harmonic oscillator, was proposed by Gottesmann, Kitaev and Preskill [ 22]. It is 

known as the GKP encoding. As each optical field mode is equivalent to a quantised 

harmonic oscillator, this scheme can be used for CV encoding of optical qubits. 

The ideal states are defined in Sect. 1.8. These are not physical states. Instead, the 

ideal encoding is approximated by a coherent superposition of Gaussian displaced 

squeezed vacuum states, Fig. 15.17. 

.|0̃〉 =  N0 

∞
∑

k=−∞ 

e−2π �̃2k2 D(k
√

π)|r〉, (15.76) 

.|1̃〉 =  N1 

∞
∑

k=−∞ 

e−2π �̃2(2k+1)2 D((k + 1/2)
√

π)|r〉, (15.77) 

where .D(k
√

π)  is the displacement operator defined in (1.29) and .� = e−2r . In  

terms of the diagonal representation of .X1 these can be written 

.〈x |0̃〉 =  N0 

∞
∑

k=−∞ 

e−2π �̃2k2 (2π�)−1/4 exp

[

− 
(x − 2k

√
π)2 

2�

]

(15.78) 

.〈x |1̃〉 =  N1 

∞
∑

k=−∞ 

e−2π �̃2(2k+1)2 (2π�)−1/4 exp

[

− (x − (2k + 1)
√

π)2 

2�

]

(15.79) 

where .� = e−r . In cases of practical interest . �̃ = �. 
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These states are produced as post selected (conditional) states in a measurement 

protocol. We will describe two schemes. The first makes use of the cubic interaction 

between a signal .(a, a†) and probe .(b, b†) field described by the ‘optomechanical’ 

Hamiltonian, 

.H = �χ(a† + a)b†b (15.80) 

where .a, a† are the annihilation and creation operators of the signal mode and . b, b† 

are the annihilation operators for the probe mode. The signal mode is prepared in a 

squeezed state 

.|ψin〉 =  S(r)|0〉 (15.81) 

and the probe mode is prepared in a coherent state.|β〉with.β ∈ C. We choose a phase 

convention such that . α is real and .r > 0. This implies a phase squeezed state, that 

is to say, the quadrature phase amplitude in phase with the coherent displacement is 

anti-squeezed. 

The probe mode is now prepared in a coherent state .|β〉 with .β ∈ C. After a fixed 

interaction we project the probe mode into an eigenstate of .Xb = (b + b†). This 

is equivalent to homodyne detection with an integrated signal current [ 23]. Let the 

result of this measurement be .y ∈ R. The (unnormalised) conditional state of the 

signal mode is then given by 

.| ψ̃out 〉 =  ϒ̂(y)|ψin〉 (15.82) 

where the Krauss operator is given by 

. ϒ̂(y) = b〈y|e−iθ(a†+a)b†b|β〉b (15.83) 

where .θ = χ T for interaction time . T . This operator is diagonal in .X = a + a†. In  

this basis we define 

.ϒ(x |y) = 〈x | ϒ̂(y)|x〉 (15.84) 

We then find that 

.ϒ(x |y) = (2π)−1/4 exp
[

iyr  sin(θ x − φ) − (y − 2r cos(θ x − φ))2/4
]

(15.85) 

is a conditional probability amplitude, and 

. |ϒ(x |y)|2 = (2π)−1/2 exp
[

−(y − 2r cos(θ x − φ))2
]

(15.86) 

is a conditional probability with .β = |β|ei φ . 
In Fig. 15.18 we plot the conditional probability .|ϒ(x |y)|2 versus . x for various 

values of . y. The peaks are centred at .cos(θ x − φ) = y/2r . For  . r sufficiently large 

the peaks are separated in displacement by by .π/θ . The off-set between the peaks 

for .φ = 0 and .φ = π/2 is .δx = π/2θ so choosing .θ = 
√

π/2 gives the GKP qubit 

states. 
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Fig. 15.18 A plot of the conditional probability versus . x with . y = 0.1, r = 4, θ  = π/2 

The un-normalised conditional output state, conditioned on the measuremt result 

. y, in the diagonal representation of .X is 

. ψ̃ (φ) (x |y) = ϒ(x |y)ψin(x) (15.87) 

Normalising the state we see that 

.ψ (φ) (x |y) = 
1√
P(y) 

ϒ(x |y)ψin(x) (15.88) 

where 

.P(y) =
∫ ∞ 

−∞ 

dx  |ϒ(x |y)|2 |ψin(x)|2 (15.89) 

is the probability distribution of the measurement outcomes. The mean and variance 

of this distribution are 

.E(y) = 2r〈cos(θ X̂ − φ)〉 (15.90) 

.V(y) = 1 + 4r2(〈cos2(θ X̂ − φ)〉 − 〈cos(θ X̂ − φ)〉2) (15.91) 

Clearly .〈cos2(θ X̂ − φ)〉 ≤  1 thus 

.V(y) ≤ 1 + 4r2 (15.92) 

We now take two special cases .φ = 0, π/2 and define correspondingly 

. Ĉ = cos(θ X̂ ) (15.93) 

. Ŝ = sin(θ X̂) (15.94) 
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Fig. 15.19 The probability density of the conditional output state with . y = 0.5, σ  = 20, θ  = π/2 

If we take the input state as a squeezed vacuum state, 

.〈Ĉ〉 =  e−σθ  
2 

(15.95) 

.〈Ŝ〉 =  0 (15.96) 

Thus in the case that .φ = 0 we have that 

.E(y) = 2re−σθ  
2 

(15.97) 

Figure 15.19 we plot the position probability density of the output state. 

Assuming that we can prepare a GKP encoded qubit, what is required for universal 

computation? It was shown in the original proposal [ 22] that if we can implement 

the unitary transformation 

.U3(γ ) = eiγ X̂3 = ei γ (a+a†)3 (15.98) 

then we can implement universal QC using the GKP code. This is called the cubic 

phase gate. 

The cubic phase gate is implicit in the unitary factor of the Krauss operator in 

(15.85). Expanding the trignometric functions to third order in . x and setting .θ = 0, 

we find that 

.ϒ(x |y) = (2π)−1/4 exp
[

iyr  (θ x − (θ x)3/6) − (y − 2r)2/4
]

(15.99) 

The phase shift linear in . x can be removed with a conditional displacement once . y 

is recorded. The real factor drops out after normalisation as it does not depend on 

. x . Many other approaches have been suggested for the cubic phase gate. A deter-

ministic scheme to implement the cubic phase gate in a single microwave mode was 
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Fig. 15.20 An optical Gaussian Boson Sampling scheme for producing an approximation to a 

GPK state, conditioned on the correct count string .(n1, n2). The inputs are single mode displaced 

squeezed vacuum states 

demonstrated at Chalmers University using a non liner inductance and a microwave 

cavity [ 24]. 

15.4.1 GKP via Gaussian Boson Sampling 

The qubit codes of GKP can also be generated by adapting the method of Gaus-

sian boson sampling (GBS) [ 25]. This relies on the ability to prepare single mode 

squeezed states (with Gaussian probability amplitudes for the quadrature phase oper-

ators), entangled by Gaussian unitary transformations (an LOQC network), with 

number-resolving photon counting for post-selection. This approach was proposed 

in Bourassa et al. [ 26]. It can produce cluster states built from GKP states, thereby 

enabling measurement based QC that is fault tolerant in principle. 

An example of this approach is shown in Fig. 15.20. The analysis of this GBS 

scheme is given in [ 27]. The heralded output state is a superposition of number states, 

with bounded total number (.nmax ), followed by a squeezing operation, parametrised 

by . ξ and a displacement, parametrised by . d, 

.|ψ〉out = D(d)S(ξ ) 

nmax
∑

n=0 

cn|n〉. (15.100) 

By carefully adjusting the parameters of each of the three beamsplitters, the output 

state can be made a good approximation to a GKP state with a Gaussian envelope 

for a particular count pattern. 

15.5 Cat State Qubits 

An early proposal using nondeterministic teleportation gates for cat state codes was 

given in [  28]. Many more schemes have been proposed. Parity cat states are defined 

as 

.|±〉 = N±(|α〉 ± | −  α〉) (15.101) 
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Fig. 15.21 A scheme first suggested by [ 29] for the non deterministic of cat states using a special 

two-mode GBS implementation of GBS equivalent to photon subtraction 

where the normalisation constant is given by .N
−1/2 
± 

= 

√
2

(

1 ± e−2|α|2
)

. They are 

eigenstates of the parity operator .� = e−iπa†a . The qubit code is then simply . |0〉 =  

|+〉, |1〉 = |−〉. Cat states produced nondeterministically can easily be entangled 

on beamsplitters [ 28], thus entangling gates are easy. Single qubit gates are more 

difficult but can be done using weak displacements and teleportation. 

Kerr nonlinearities can produce cat states with Poisson statistics. Such nonlinear-

ities can be large in superconducting quantum circuits, but are too small for optical 

systems. In that case nondeterminsistic (measurement-based) protocols can be used. 

These only require single-mode squeezed states (a Gasussian resource) and number-

resolving detection. This approach is promising for scalability. 

An example is shown in Fig. 15.21 which is a variation on a simple two mode 

GBS scheme. Consider two optical modes with annihilation operators .a, b. These 

are prepared in the product input state 

.|�〉in  = |ψ〉a ⊗ |φ〉b (15.102) 

Each mode then interacts via a beam splitter described by the unitary transformation 

.U
† 
BS(θ )aU

† 
BS(θ ) = 

√
Ra + 

√
Tb (15.103) 

.U
† 
BS(θ )bU

† 
BS(θ ) = 

√
Rb − 

√
Ta (15.104) 

where . 

√
R = cos θ,  

√
T = sin θ so that .R + T = 1. Thus the joint output state is 

.|�〉out = U
† 
BS(θ )|�〉in (15.105) 

Using the coherent state resolution of identity this may be written as 

.|�〉out =
∫

d2α 

π 

d2β 

π 
A(α)B(β) U

† 
BS(θ )|α〉a ⊗ |β〉b (15.106) 

where .A(α) = 〈α|ψ〉 and .B(β) = 〈β|φ〉. As coherent states are not entangled by 
the beam splitter interaction this becomes 

.|�〉out =
∫

d2α 

π 

d2β 

π 
A(α)B(β)|

√
Rα + 

√
T β〉a |

√
Rβ − 

√
T α〉b (15.107) 
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As the beam splitter transformation does not change phase space volume we can 

make a change of variable by the rotation, 

.

(

α̃ 

β̃

)

=
( √

R 
√
T 

−
√
T 

√
R

) (

α 

β

)

(15.108) 

The output state then becomes 

.| �̃〉out =
∫

d2α 

π 

d2β 

π 
A(

√
Rα − 

√
T β)B(

√
Rβ + 

√
T α) |α〉a |β〉b (15.109) 

where we have dropped the tildes. 

Now suppose that the input states are squeezed vacuum states with equal and 

opposite squeezong 

.|ψ〉 =  S(r )|0〉a (15.110) 

.|φ〉 =  S(−r )|0〉b (15.111) 

Then 

.A(α) = 1√
cosh(r) 

exp

[

− 
1 

2 
(|α|2 + tanh r α∗ 2)

]

(15.112) 

.B(α) = 1√
cosh(r) 

exp

[

− 
1 

2 
(|β|2 − tanh r β∗ 2)

]

(15.113) 

In this case we find that 

.A(
√
Rα − 

√
T β) B(

√
Rβ + 

√
T α) (15.114) 

. = exp

[

−1 

2 
(|α|2 + |β|2) − 

1 

2 
tanh r

(

μ(α∗ 2 − β∗ 2) − 4να∗β∗)
]

with .μ = R − T and .ν = 

√
RT . 

Suppose we make a measurement of the output photon number on mode-b with 

result . n. The unnormalised conditional state of mode-a is then given by 

.| ψ̃n〉 =
∫

d2α Pn(α)|α〉 (15.115) 

with 

.Pn(α) = e−|α|2/2−μ tanh r α∗ 2/2

∫

d2β 
βn 

√
n! 

e−|β|2− tanh r 
2

(

μβ∗ 2+4να∗β∗)
(15.116) 

The norm of .| ψ̃n〉 is the probability .Pn to obtain the result . n. 
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The . β integral can be done using the generating function for complex Hermite 

polynomials. We first use 

.e−aβ2+2bαβ = 

∞
∑

m=0 

(
√
aβ)m 

m! Hm (bα/
√
a) (15.117) 

with .a = (μ/2) tanh r and .b = −ν tanh r . Then use 

.

∫

d2βe−|β|2 βnβ∗ m = n! (15.118) 

We thus end up with 

.

∫

d2β 
βn 

√
n! 

e−|β|2 e−aβ∗ 2+2bα∗β∗ = 
an/2 

√
n! 

Hn(bα
∗/

√
a) (15.119) 

The cat state structure is clearly evident. The unnormalised conditional output state 

is determined by the amplitude 

.Pn(α) = 
an/2 

√
n! 

Hn(b
∗/

√
a)e−|α|2/2−aα∗ 2 

(15.120) 

with.a = (μ/2) tanh r and.b = −να tanh r and.μ = R − T . The beamsplitter param-

eters .μ, ν are related by 

.ν2 = 1 − 
μ2 

4 
(15.121) 

In Fig. 15.22 we plot .|Pn(α)|2 in the complex pane for various values of .n, μ. 

Problems 

15.1 Find an array of beam splitters and phase shifters that implements the three-port 

transformation. 

. a0 → 
1√
3 
(a0 + a1 + a2) 

a1 → 
1√
3 
(a0 + e−2π i/3a1 + e2π i /3a2) 

a2 → 
1√
3 
(a0 + e2π i/3a1 + e−2π i/3a2) 

15.2 It is not possible to do teleportation with duel rail encoded qubits using linear 

optics alone however a non deterministic scheme exists can be constructed for single 

photon states. Prove that the teleportation of the input state .α|0〉 +  β|1〉 works 50% 

of the time provided the total count at the top two detectors is one. 
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Fig. 15.22 The Q-function amplitudes for the conditional state achieved in Fig. 15.21 with a count 

of .n = 16 and decreasing values of . μ 

15.3 A cluster state is to be created according to the graph shown below. 

The first step is to prepare all the qubits in the state .| + + + +〉 by single qubit H 
gates. 

(a) Verify that 

. CZ12CZ23CZ34| + + + +〉 =  
1 

2 
(|0 + 0+〉 + |0 − 1−〉 + |1 − 0+〉 + |1 + 1−〉) 

(b) If a .z-measurement is made on qubit-1, show that this qubit is removed from the 

cluster but the rest of the cluster is unchanged. What happens if a .z-measurement 

is made on qubit-2.? 

(c) What happens of an .x-measurement is made on the second qubit? 

15.4 Consider the conditional experiment shown in Fig. 15.5. The fibre coupler 

implements the unitary transformation 

.a1(θ ) = cos θ a1 − sin θa2 

a2(θ ) = cos θ a2 − sin θ a1 
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The conditional state at the output is determined by 

. |ψ ′〉s =
1√
p(m) 

Ê(n|m)|ψ〉s 

and . Ê(n|m) = anc〈m|U (H)|n〉anc where .n, m ∈ {0, 1}. Show that 

. Ê(0|0) = 

∞
∑

n=0 

(cos θ − 1)n 

n! (a
† 
1 )

nan 1 =: eln(cos θ)a
† 
1a1 : 

Ê(1|1) = cos θ Ê(0|0) − sin2 θa
† 
1 Ê(0|0)a1 

Ê(0|1) = −a
† 
1 sin θ Ê(0|0) 

Ê(1|0) = −  sin θ Ê(0|0)a1 

15.5 Show that a .σx measurement on a qubit in a linear cluster combines the neigh-

bouring qubits into a single logical qubit (redundantly encoded). 

15.6 Derive (15.120). 
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16Quantum Optical Sensors 

Abstract 

The development of quantum sensors is a major component of emerging quan-

tum technologies. As our understanding of measurement in quantum mechanics 

advanced it became clear that there would be new opportunities for quantum sen-

sors that could out perform their classical counterparts. Optical sensors have long 

been a key sector of the precision sensor industry and quantum optical sensors 

are a natural extension of this, especially for remote sensing. The recent progress 

in machine learning has led to a new kind of smart-sensor and these ideas can be 

readily applied to quantum optical sensors. 

16.1 Precision Sensing 

Precision sensors are ubiquitous in modern technology. A sensor is a device that 

enables us to detect changes in one or more parameters in a physical process. The 

output signal is a result of some physical measurement, eg a voltage, a photo-current 

or a homodyne signal. The sensitivity of the sensor will determine how small a 

change in the parameter of interest can be detected in the measurement signal and 

this will depend on the noise added by the measurement process as well as intrinsic 

background noise sources, typically thermal. 

In Fig. 16.1 we give an example of an optical accelerometer based on a Michelson 

interferometer. The parameter of interest is an acceleration in the horizontal direction. 

What is measured is the displacement of the proof mass due to this acceleration. The 

optical measurement scheme seeks to detect the change in the relative arm length 

and estimate the acceleration. We can treat the proof mass as a mirror with a linear 

restoring force in the horizontal direction. The spring constant is . k and the mass is 

.m0. Let the displacement from equilibrium be . x and thus the change in the relative 

path length for the interferometer is also. x . The effect of the acceleration is to apply a 

time-dependent force. f (t) = m0a(t) to the oscillator. For simplicity, we will assume 

that the oscillator is heavily damped with damping rate . η and that the temperature 
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Fig. 16.1 A simple Michelson interferometer for an optical sensor for inertial acceleration 

of the environment is . T . In the classical case, the displacement obeys the classical 

Smolochowski process with stochastic differential equation [ 1] 

.dx  = −  
ω2 
0 

γ 
xdt  + (a/γ )dt  + σ dW (16.1) 

where the fluctuation-dissipation theorem requires that.σ 
2 = 2kB T γ . The stationary 

solution for the displacement is 

.P(x |a) = e−(x−a/ω2 
0)

2/2� (16.2) 

The mean and variance of the displacement is 

.x̄ = 
a 

ω2 
0 

, � = 
kB T 

m0ω
2 
0 

(16.3) 

This suggests that in order to estimate . a we need to measure the displacement and 

form the empirical average 

.aest = ω2 
0 

1 

N 

N
∑

n=1 

xn (16.4) 

The deviation of the estimate from the parameter is .δa = aest − a. The precision of 

the estimation is the second moment of.δa. This is bounded below by the Cramer-Rao 

lower bound [ 2] 

.E[(δa)2] ≥ 1 

NF(a) 
(16.5) 
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where .F(a) is the Fisher information defined by 

.F(a) ≡
∫

dx  
1 

P(x |a)

(

∂ P(x |a) 

∂a

)2 

(16.6) 

In this case .F(a) = � so the precision is bounded by 

.E[(δa)2] ≥ kB T 

Nm0ω
2 
0 

(16.7) 

This scheme constitutes a linear sensor as .x̄ ∝ a. The estimate can be improved 

by lowering the temperature, or increasing the mass or increasing the oscillator 

frequency. As we lower the temperature and increase the frequency we will need a 

quantum description of overdamped motion when .�ω0 > kB T . We will not pursue 

this here. In stead we will consider a quantum optical version of this sensor after we 

have formulated the quantum parameter estimation problem. 

16.1.1 Optical Accelerometer 

It is straightforward to model the quantum limits to the accelerometer depicted in 

Fig. 16.1. To simplify the explanation we reconfigure the scheme so as to look like 

a Fabry-Perot interferometer, see Fig. 16.2. In this case the input-output methods in 

Chap. 6 give 

.aout (ω) = 

κ 

2 
+ i(ω − δ) 

κ 

2 
− i(ω − δ) 

ain(ω) . (16.8) 

where .δ = ωcx/L where . L is the length of the cavity and . x is the displacement of 

the mirror from an exact cavity resonance. A coherent pulse at the cavity resonance 

.ω = 0 with amplitude .α0 experiences the phase shift .φ(δ)  where 

. tan(φ(δ)) = κδ 

γ 2/4 − δ2
(16.9) 

Integrating the quadrature-phase homodyne current current over a measurement time 

. T gives a random variable is (see (7.64)), 

.z = κT α0 sin(φ(δ)) ≈ 
4α0ωcT 

L 
x + 

√
κ

∫ T 

0 

dW  (t) (16.10) 

for small displacements. The mean signal is thus linear in the acceleration and we 

define the signal as .E[z] =  gT a  where the gain is 

.g = 
4α0ωc 

ω2 
0 L 

(16.11) 
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Fig. 16.2 xxx 

The variance in . z is .V[z] =  κ T . The square of the signal-to-noise ratio is 

.SN  R2 = 
g2a2T 

κ 
(16.12) 

In order for this to be greater than one, we need 

.amin > 

√
κ 

g
√
T 

(16.13) 

As .g2 is proportional to the input power, we can make this small by using a more 

powerful laser input. As we will see in Sect. 16.6, there is a another limit that sets 

in while increasing the laser power. We can also make the sensor more sensitive by 

increasing the integration time, at the expense of making it slower. 

16.2 Quantum Parameter Estimation 

The general quantum parameter estimation, for a sequential scenario, is sketched in 

Fig. 16.3 An initial state, . ρi , undergoes a dynamical transformation that depends on 

some real parameter . θ to produce an output state .ρo(θ ). A measurement is made of 

some observable, described by a POVM . P̂(ξ ). After .N repetitions, the sequence of 

outcomes is used to form an estimate. θ̃ of the parameter. θ . The probability distribution 

of outcomes, conditioned on the parameter . θ is 

.P(ξ |θ)  = tr[ P̂(ξ )ρo(θ )] (16.14) 
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Fig. 16.3 A sequential scheme of parameter estimation 

The estimate of the parameter is a function of the measurement results . θ̃ = 

θ̃ (ξ1, ξ2, . . . , ξN ), for example, the empirical mean 

.θ̃ = 
1 

N 

N
∑

k=1 

ξk (16.15) 

We form the deviation as 

.δθ = λ ̃θ − θ (16.16) 

where 

.λ−1 = 
d θ̃ 

dθ 
(16.17) 

removes the local difference in the “units” of the estimator and the parameter. 

The quantum Cramer Rao lower bound is obtained by a further optimisation over 

all POVMs [ 2] 

.E[δθ 
2] ≥ 1 

N (ds/dθ)2
(16.18) 

where the statistical distance is defined by 

.(ds/dθ)2 = tr[ρ′
Lρ (ρ

′)] (16.19) 

and.ρ = ρo(θ ), ρ′ = 
d 
dθ 

ρo(θ ) . The super-operator.Lρ , in the basis that diagonalizes 

. ρ , takes the form 

.Lρ ( Â) =
∑

{ j ,k|p j+pk �=0} 

2 

p j + pk 
A jk | j〉〈k| (16.20) 

and .A jk  = 〈 j | Â|k〉. 
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16.2.1 Single Parameter Unitary Transformations 

As a simple example, suppose we want to estimate how much coordinate time has 

elapsed by making measurements of an arbitrary observable on the unitarily evolved 

state 

.ρo(T ) = e−i Ĥ T  /�ρi e
i Ĥ T  /� (16.21) 

where . Ĥ is the system Hamiltonian. The quantum Cramer-Rao (QCR) bound gives 

.E[δT 2] ≥ �
2 

N 〈�Ĥ2〉i 
(16.22) 

where 

.〈�Ĥ2〉i = tr[ρi (�Ĥ )2] (16.23) 

with .�Ĥ = Ĥ − 〈Ĥ〉. We see that we need to use an input state with as large a 

variance in the energy as possible. 

It is important to note that the QCR bound does not tell us what POVM to use 

to saturate the bound. It might in fact be a very difficult measurement to make. For 

example, suppose the system is a single mode cavity field, . Ĥ = �ωa†a. Consider 

an input squeezed vacuum state .|r〉 (see Sect. 1.4). The variance in the energy is 

.〈r |(�Ĥ )2|r〉 =  
1 

2
�
2ω2 n̄(n̄ + 1) (16.24) 

where.n̄ = sinh2 r . This suggests that we need.n̄ ≫ 1. In other words, we need initial 

states of very high average energy. This is a general feature of estimating elapsed 

local time. 

What measurements should we actually make? There is no point in photon count-

ing as it is insensitive to this transformation. Homdyne detection would require 

knowing the parameter in order to choose the correct quadrature phase. It turns out 

that the Susskind-Glogower POVM in Sect. 1.6 is optimal but of course is unphys-

ical. In fact it is generally the case that choosing a POVM that commutes with the 

operator canonically conjugate to the generator of unitary transformations is always 

best. 

16.2.2 Single Parameter Non-unitary Transformations 

Consider the one parameter non unitary operation defined as 

.ρo(θ ) =
∑

k 

ϒk (θ )ρi ϒ
† 
k (θ ) (16.25) 



16.3 Kinetic Uncertainty Relations 311 

An example is given in in Sect. 7.1. 

. ϒ̂(n|θ)  = 
1√
n! 

(1 − e−θ )n/2e−θ a†a/2an (16.26) 

where the sum is .n = 0, 1, 2, . . .. which describes a photon loss process where the 

probability to absorb a photon is .1 − e−θ . It is easy to se that 

. 

dρ(θ ) 

dθ 
= aρ(θ )a† − 

1 

2 
(a†aρ(θ ) + ρ(θ )a†a) (16.27) 

The rate of change of statistical distance is 

.

(

ds  

dθ

)2 

= tr[aρa†Lρ (aρa†)] −  2〈a† 2a2〉 + 〈(a†a)2〉 (16.28) 

If we start in a coherent state.|α0〉 solution to (16.27) is.ρ(θ )=|α0e
−θ/2〉〈α0e

−θ/2|. 
As this is a pure state it has only a single unit eigenvalue. We find that 

.

(

ds  

dθ

)2 

= |α0|2e−θ (16.29) 

The parameter uncertainty bound is then 

.E[δθ 
2] ≥  

eθ 

Nn0 
(16.30) 

where .n0 = |α0|2 is the initial mean photon number. If all photons are lost . θ → ∞  

and it is impossible to estimate . θ . 

16.3 Kinetic Uncertainty Relations 

In many quantum optics experiments, the measurement record is a stochastic pro-

cess for example a homodyne photo-current .J (t), (see Sect. 7.3). The source of the 

light could be controlled by a parameter that we need to estimate. For example, the 

detuning of a laser drive from an intra-cavity dipole emitter could be estimated using 

homodyne detection of the emitted light. In this case we could integrate the mea-

surement current over a time . T to get a random variable .x(T ) the statistics of which 

can be used to infer the relevant parameter using the QCR bound [ 3]. In this case the 

bound will need to reflect irreversible dynamics of the cavity. 

As an example we consider the case of a coherently driven single mode cavity 

with damping rate . κ containing a two level system (see Fig. 16.4). The question we 

ask is: is there a universal bound for parameter estimatoin in this case regardless of 

what integrated current we choose? 
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Fig. 16.4 A driven cavity containing a single two level atom emits a field into the environment. 

This may be subject to photon counting or homodyne detection. In both case we wish to infer some 

parameter of the irreversible dynamics from the integrated photo current or homodyne currrent that 

produces a random variable . x(t) 

This problem was first posed in a quantum optical setting by Gammelmark and 

Molmer [ 3]. It also arises in the study of stochastic thermodynamics where the answer 

is given in terms of entropy production [ 4]. Not surprisingly it can be formulated in 

terms of the Fisher information associated with the statistics of .x(t). 

Hasegawa [ 4] showed that under physically realistic assumptions 

. 

V[x] 
E[x]2 ≥

μ 

T (K + Q) 
(16.31) 

where. T is the integration time and.μ = 1 for integrating a photon counting measure-

ment and .μ = 1/4 for a integrating a homodyne current. Here .K arises purely from 

classical stochastic processes, for example, decay of photons into the environment, 

while .Q captures quantum coherence terms and arises from the Hamiltonian part 

of the dynamics. These quantities are determined entirely by the master equation 

that describes the source of the measurement current. We will refer to .K , Q as the 

classical and quantum activation respectively. 

As an example we consider the interaction picture master equation describing the 

a two-level atom in a highly damped cavity and driven cavity (see Sect. 9.2), 

. 

dρ 

dt  
= −i

�

2 
[σz, ρ] −  i�[σ+ + σ−, ρ] +  γ D[σ−]ρ (16.32) 

where .� is the Rabi frequency, the detuning is .� = ωa − ωL and .ωL is the carrier 

frequency of the driving field and .ωa is the atomic transition frequency. In this case 
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.K = γ pe,ss  where .pe,ss  is the steady state probability to find the atom in the excited 

state. The classical and quantum activation are then given by 

.K = 4γ�2 

4�2 + γ 2 + 8�2
(16.33) 

.Q = 
128�4

[

4�4 + �2(γ 
2 + 32�2) + (γ 

2 + 4�2)2
]

γ (4�2 + γ 2 + 4�2) 
(16.34) 

Hasegawa also proved an important connection to the field of stochastic thermo-

dynamics. This relates the bound in (16.31) to the entropy production. � in the steady 

state, 

. 

V[x] 
E[x]2 ≥ 

2μ 

T�
(16.35) 

We thus see that decreasing the lower bound is achieved by making the entropy 

production rate in the environment as large as possible. We will consider how this 

works in the case of clock design in the next section. 

16.4 Quantum Optical Clocks 

Form the perspective of quantum optics, a clock is a quantum sensor to estimate a 

period or frequency of a periodic process that is as precise as possible. This task can 

be related to the kinetic uncertainty relation discussed in the previous section. In the 

case of a clock the sensor is typically a counter for some sustained temporal process. 

The process itself can be quite varied but for an autonomous periodic clock it is often 

a dissipative dynamical structure known as a limit cycle [ 5]. Microwave generators 

achieve this using a DC drive to a circuit with negative differential resistance over 

some voltage range. This is a form of amplification that leads to a limit cycle forma-

tion in which a dissipative nonlinear system undergoes a Hopf bifurcation to a one 

dimensional attractor. 

As we saw in Chap. 10, a good example is a laser which exhibits a fixed point to 

limit cycle bifurcation in a semi-classical description of its dynamics (see (10.23)). 

The laser is an autonomous clock in that it can reach a non-thermal equilibrium 

steady state due to a population inversion maintained by two thermal baths at dif-

ferent temperature. Above threshold, the laser exhibits phase diffusion due entirely 

to quantum noise. This ultimately limits its precision as a clock, although in a real 

artefact many technical noise sources are likely to limit its performance. The laser 

exhibits another important aspect of a quantum clock: the nature of the measure-

ment is important. There is no point counting photon emission from a laser. To use 

it as a clock you need to make a phase-dependent measurement such as homodyne 

detection or a Ramsey fringe interferemetor. 

The laser phase diffusion rate decreases as the mean photon number in the cavity 

increases (see (10.33)). This is a generic feature of all limit cycle clocks and leads 
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to fluctuations in the period of the extracted clock signal and a Lorentzian line shape 

for the power noise spectrum. We will consider the statistics of the period first. 

The period is the time taken for a monitored oscillatory variable to change its 

phase by .2π . Fluctuations in phase of the oscillation mean it sometimes gets to . 2π 

a bit too early or a bit too late. This is a first passage time problem: what is the 

probability distribution for the time .T taken for the phase to first reach .2π starting 

from a zero point. In the case of a limit cycle, the resulting distribution in periods is 

given by the Wald distribution (see Chap. 10). 

In the case of clocks built from limit -cycle dynamics, this is given by [ 6], 

. W (T , α, λ)  =
√

λ 

2π 
T −3/2 exp

[

− λ 

2α2T 
(T − α)2

]

t ≥ 0. 

where .α, λ are positive real parameters (. λ is called the spread parameter). The mean 

and variance are 

.E[T ] =  α, V[T ] =  
α3 

λ 
(16.36) 

In the case of a laser .α = 
2π 

ωc 
, where .ωc is the laser cavity frequency, and .λ = π 

2/Ŵ, 

where .Ŵ is related to the mean photon number in the cavity . n̄ and the gain .G as 

.Ŵ = G/(8n̄). 

We define a clock quality .N as the square of the signal-to-noise ratio. 

.N = 
E[T ]2 
V[T ]2 = λ/α (16.37) 

A good clock is one for which .λ ≫ α. In the case of a laser 

.N = 
πω  

2Ŵ
(16.38) 

We now turn to the noise power spectrum. The phase variable on the limit cycle 

is defined in terms of the complex amplitude of the laser cavity field . α(t) = r0e
iφ(t) 

where 

.dφ = −iωdt  + 
σ 

r0 
dW (16.39) 

where . ω is the frequency on the limit cycle and .σ 
2 is the variance in the noise. For 

a thermal clock .σ 
2 ∝ kB T . In the case of a quantum clock this is not the case, for 

example, in a laser .r0 = 

√
n̄ and .σ 

2 = G/2. The Ito stochastic differential equation 

for .α(t) is the Kubo oscillator (See [ 7] p. 104). 

.dα = iα(t)dθ(t) = i(ωdt  + 
σ 

r0 
dW  )α(t) (16.40) 

The stationary two-time correlation function for heterodyne detection is given by 

.E[α∗(0)α(τ )] =  e 
i ωt− 

σ 
2 

2r2 
0 

|τ | 
(16.41) 
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The noise power spectrum is the Fourier transform of this 

.P(�) = 
r2 0 

π 

γ 

γ 2 + (ω − �)2
(16.42) 

where the line width is 

.γ = 
σ 
2 

4r2 0 
(16.43) 

a Lorentzian. In the case of a laser .γ = G/(8n̄). 

16.4.1 FPT Uncertainty Relation 

Various authors [ 8] have shown that the quantity, .N satisfies an uncertainly relation 

closely related to a KUR, 

.N ≤ E[T ](K + Q) (16.44) 

when the clock signal is derived from measurements made on the field emitted by a 

source that obeys a Markov master equation. As a simple example we consider a clock 

made up of photon emissions from the cavity in Fig. 16.4, in the bad cavity limit, 

and thermally driven. The two-level atom that obeys the master equation, (9.40), 

. ρ̇ = − iωa 

2�
[σz, ρ] +  γ (  ̄n + 1)D[σ−]ρ + γ n̄D[σ+]ρ (16.45) 

where . γ is the spontaneous emission rate and . n̄ is the mean thermal occupation of 

the cavity at the atom resonance frequency. In the eigenstates of the atomic energies 

this is a two state markov stochastic process, 

. ṗg = ν pe − μ + pg = −  ̇pe (16.46) 

where.ν = γ (n̄ + 1), μ = γ n̄ are the transition rates from.e → g and.g → e respec-

tively. When the atom makes a transition from one falling edge to the next a photon 

is emitted and we regard each of these as a ‘tick’ of the clock. The distributions of 

the period . T defined this way is given by 

.P(T ) = μν 

ν − μ 
(e−μT − e−νT ) (16.47) 

In the high temperature limit .ν → μ, this becomes 

.P(T ) = μ2T e−μT . (16.48) 

The mean and variance of this distribution are 

.E[T ] =  
2 

μ 
, V[T ] =  

2 

μ2 
. (16.49) 
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Thus .N = 2 for this aperiodic clock. In this case .K = μ, Q = 0 and the FPT bound 

is saturated. 

A more interesting case was studied experimentally in [ 9]. A driven supercon-

ducting transmon two-level system in a coplanar microwave cavity was described 

by the master equation 

. 

dρ 

dt  
= −i[�σx + �σz, ρ] + ŴD[σz]ρ = Lρ, (16.50) 

where. � is the Rabi frequency,. � is the Stark shift,. Ŵ is the dephasing rate determined 

entirely by the .σz-QND measurement back action. In the experiment, spontaneous 

emission of the transmon qubit was negligible. Given that this model is only subject 

to dephasing, it is easy to show that the steady state is just the maximally mixed state 

.ρss  = 
I 
2 
. There are two types of dynamics; underdamped, .Ŵ <  2�, which exhibits 

oscillations and over-damped, .Ŵ >  2� with a monotonic approach to the steady 

state. 

We will suppose that the system is being continuously measured via Homodyne 

detection and is described by the stochastic master equation 

.dρJ = −i[�σx + �σz , ρJ ]dt  + ŴD[σz]ρJ dt  + 

√
Ŵ(σz ρJ + ρJ σz − 2tr[σz ρJ ])dW  , (16.51) 

where .dW  is a Weiner process, and the index . J indicates that we are conditioning 

on the Homodyne current 

.J (t)dt  = 2
√

Ŵtr[σzρJ ]dt  + dW  . (16.52) 

This problem was discussed in Sect. 11.2.1 and we use that model to illustrate the 

role of FPT uncertainty relations for understanding precision. As defined by He et 

al. [ 9], the precision of the clock can be measured by the signal-to-noise ratio (SNR) 

in the first passage time for the clock to undergo a tick and tock. This corresponds 

to the time it takes for the system to traverse a longitudinal angle of .θ = 2π , which 

we will denote as . τ . Thus the quality of the clock is measured as 

.N = 
E[τ ]2 
Var[τ ] . (16.53) 

If we ignore the multiplicative noise term in the conditional dynamics, the statistics 

follows a Wald distribution in the underdamped oscillatory regime (.Ŵ <  2�), 

.P(τ ) =
√

π

Ŵτ 3 
exp

(

− (2π − 2�τ )2 

4Ŵτ

)

, (16.54) 

with mean and variance given as: 

.E[τ ] =  
π

�
, Var[τ ] =  

πŴ

2�3 
. (16.55) 



16.5 Non Linear Quantum Sensors via Machine Learning 317 

Thus .N = 2π
(

�
Ŵ

)

. A direct simulation of the stochastic differential equations indi-

cates that this is a good approximation when . Ŵ is very small. 

The FPT uncertainty relation [ 8] gives, .N ≤ (K + Q), where 

.K = Ŵ , Q = 
4�2

Ŵ
, (16.56) 

Not surprisingly, for a good clock we need .� ≫ Ŵ. 

In the quantum jump regime we define one period to be the time from one down-

ward transition to the next. The Markov transition rate, . μ, can be used to calculate 

a FPT distribution: 

.P(T ) = μ2T e−μT , (16.57) 

where the transition rate is .μ = Ŵ�2/(Ŵ2 + �2) Then 

.E[T ] =  
2 

μ 
, Var[T ] =  

2 

μ2 
, N = 2 . (16.58) 

This is the expected result for a Markov process clock. This system enables us to 

move from an oscillatory clock, when the measurement dephasing is weak, to a 

quantum jump clock for which the measurement dephasing is very large. Changing 

the measurement process changes the nature of a quantum clock. 

16.5 Non Linear Quantum Sensors via Machine Learning 

Many sensors operate with linear response for which the measured variable is pro-

portional to the parameter to be estimated. The rise of machine learning has led to 

the concept of a smart sensor [ 10] that moves beyond this. More broadly, machine 

learning is impacting many areas of quantum technology [ 11]. 

We will discuss a machine learning enhancement for single photon scanning of 

a phase image [ 12]. A phase image encodes the data in the spatial distribution of 

phase changes in an optical wave after reflection. In the single photon case, the phase 

changes lead to an intensity modulation of the reflected pulse. Using a time resolved 

Raman single photon detector (see Sect. 14.2) a control pulse can be optimised 

using a machine learning to extract the spatially dependent parameters encoding the 

image. As an example, will assume that these are the detuning from the pulse carrier 

frequency and the line-width of a reflecting optical cavity. Single photon pulses, as 

opposed to weak coherent pulses, offer a number of advantages. 

The scheme is depicted in Fig. 16.5. A single photon Raman pulse produces a 

sequence of identical single photon pulse with temporal function .ν(t). The reflected 

single photon pulse has a different temporal function .ξ(fT , t) that depend on the 

true parameters .fT = (κ,�) of the cavity currently under scan. The reflected pulses 

arrive back at a Raman single photon detector controlled by a classical coherent pulse 

with temporal shape .μ(f, t). The error channel is a reflection from this detector and 

a machine leaning algorithm changes the parameters . f until the error is minimised. 
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Fig. 16.5 A sequence of identical single photo pulses are reflected from an array of single-sided 

cavities, with a spatially varying piezo-modulation of the detuning from the carrier frequency. The 

image is encoded in the detuning.� and the line-width. κ of each cavity. These change the temporal 

response of each cavity distorting the intensity of the single photon pulse upon reflection.A machine 

learning scheme based on Raman single photon detectors can estimate the parameters.κ,� for each 

cavity 

When this is reached the energy loss due to photo reflection is minimised. The overall 

detector has learned the true parameters with a low probability of error. 

In analysing this scheme is important to include thermal effects in both the detec-

tors and the optical fields. The error probability is given by [ 12] 

.P(Q) 
e (t) = 

1 + n̄ 

1 + 2 n̄ 
− 

4ηŴ

κd 
tanh

(

�ωd /kB T 

2

)

, (16.59) 

where .Ŵ =
∣

∣

∫

dt ′μ∗(f, t ′)ξ(fT , t
′)
∣

∣

2 
and we have included the superscript .(Q) to 

distinguish this scheme from an equivalent classical scheme discussed below. The 

parameter .ωd is the frequency of the Raman transition in the detector, .κd is the 

response rate of the detector, and . T is the ambient temperature and . n̄ is the average 

number of thermal photons in the background field. At very low temperature the error 

probability tends to .P
(Q) 
e (t) = 1 − 

4ηŴ
κ 

and is minimised when .Ŵ is a maximum. 

This will occur when .f = fT . 

An equivalent classical scheme would use coherent state pulses with on average 

.α|2 photons per pulse. The error probability in this case is 

.P(C) 
e (t) = 

1 + n̄ 

1 + 2n̄ 
− 

4ηŴ

κd 
e−4ηŴ/κd tanh

(

�ωd /kB T 

2

)

, (16.60) 

In Fig. 16.6 we compare the quantum and the classical protocols in terms of the 

normalised parameter difference .|f − fT |N , defined as a function of iterations . i in 
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Fig. 16.6 Top: The 

normalized parameter 

difference—each parameter 

is dimensionless between . 0 

and . 1—of the agent’s 

prediction and observation, 

.|f − fT |N , defined as a  

function of iterations . i . The  

quantum agent (solid lines) 

outperforms the classical 

agent (dashed lines) at all 

temperatures, excluding the 

infinite temperature limit 

.μσ → 0. Bottom: The 

probability of measuring an 

error in the incoming pulse 

.ξ(fT , t). Here . β = �ωd 

2kB T 

the learning algorithm and the error probability also as a function of the number of 

iterations. 

16.6 LIGO 

Arguably, the largest quantum sensor existing today is LIGO (laser interferometer 

gravitational observatory) [ 13]. It consists of a Michelson-Morley interferometer, 

with a Fabry-Perot cavity in each arm to ‘store’ light, See Fig. 16.7. Each mirror 

is suspended and subject to a linear restoring potential. Caves [ 14] suggested in 

1981 that squeezed light might be used to achieve better sensitivity in the interfero-

metric detection of gravitational radiation. The result of Caves indicated that while 

squeezed light would not increase the maximum sensitivity of the device, it would 

enable maximum sensitivity to be achieved at lower laser power. Later analyses [ 18] 

demonstrated that by an optimum choice of the phase of the squeezing it is possible 

to increase the maximum sensitivity of the interferometer. This result was established 

by a full nonlinear quantum theory of the entire interferometer, including the action 

of the light pressure on the end mirrors. We shall demonstrate this following the 

treatment of Pace et al. [ 18]. 

A gravitational wave induces weak tidal forces, in a plane perpendicular to the 

direction of propagation. A gravitational wave passing normal to a circular arrange-

ment of masses would periodically force the circle into an ellipse. In the case of 

the interferometer depicted in Fig. 16.7, the end mirrors of the two cavities are con-

strained by a weak harmonic potential, and lie on a circular arc separated by .90◦. 
Thus, when a gravitational wave passes orthogonal to the plane of the interferometer, 

one cavity will be shortened as the other cavity is lengthened. If the intensity differ-
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Fig. 16.7 A simplified scheme of LIGO consisting of a Michelson-Morley interferometer, with a 

Fabry-Perot cavity in each arm to ‘store’ light 

ence of the light leaving each arm of the interferometer is monitored, the asymmetric 

detuning of each cavity caused by the moving end mirrors causes this intensity to be 

modulated at the frequency of the gravitational wave. 

While gravitational radiation reaching terrestrial detectors is highly classical 

(many quanta of excitation), the interaction is weak. The relative change in the 

length of each cavity is then so small that it is easily lost amid a multitude of noise 

sources, which must somehow be reduced if any systematic effect is to be observed. 

To begin with, it is necessary to isolate the end mirrors from external vibrations and 

seismic forces. Then one must ensure that the random thermal motion of the end 

mirrors is negligible. Ultimately as each end mirror is essentially an oscillator, there 

is the zero-point motion to take account of. 

Quite apart from the intrinsic noise in the motion of the end mirrors, noise due to 

the light also limits the sensitivity of the device. The light noise can be separated into 

two contributions. The measurement we ultimately perform is an intensity measure-

ment which is limited by shot-noise. In the case of shot-noise, however, the signal-

to-noise ratio scales as the square root of the input power, thus one might attempt to 

avoid this noise source by simply raising the input power. Unfortunately, increasing 

the input power increases the contribution from another source—radiation pressure. 

A careful study reveals that we can optimise these two complementary sources of 

noise. In this calculation we treat each end mirror as a damped simple harmonic 

oscillator subject to zero-point fluctuations and the classical driving force of the 

gravitational wave. We assume the thermal motion has been eliminated. 
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Fig. 16.8 The spatial optical modes used the quantum noise analysis. The symbol C denotes a 

circulator to spatially separate the input and output fields. The dashed line represents a vacuum 

inout. This is called the ‘unused port’. The performance of the sensor can be improved by injecting 

squeezed light at this input 

The spatial modes we will use are shown in Fig. 16.8. The measured signal is then 

determined by the photon number difference operator at the photo detectors (PD), 

.n̂− = b
† out 
1 bout 1 − b

† out 
2 bout 2 = −i

[

a
† out 
2 aout 1 e−i φ − h.c.

]

(16.61) 

where where . φ is a controlled phase shift inserted in arm 2 of the interferometer 

to enable the DC contribution to the output intensity difference to be eliminated. 

Assume that the laser is described by a coherent amplitude input with average field 

.Eγ 
1/2, then each cavity is driven by the same amplitude that is .ǫ = E/

√
2 then 

.〈ain  k 〉 =  
√

γ ǫ, such that .〈a† in  k ain  k 〉 has units of s.−1. 

We turn now to a description of the intra-cavity dynamics. The end mirrors are 

treated as a quantised simple harmonic oscillator subject to radiation pressure forces 

due to the light in each cavity. Each cavity is thus a standard opto-mechanical res-

onator [ 19]. Define position and momentum operators .Q, P for each mechanical 

oscillator. The radiation pressure force is proportional to the intra-cavity photon 

number. The total Hamiltonian for each cavity, in the interaction picture for the field, 
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then takes the form 

.H = �

2
∑

j=1

�a
† 
j a j + �B

† 
j B j + g0a

† 
j a j (B j + B

† 
j ) (16.62) 

+(−1) j f (t)(B j + B
† 
j ) − i(ǫ∗a j − ǫa

† 
j ) 

where . ǫ is the coherent driving field for each cavity, .B
† 
j , B j are the raising and 

lowering operator for vibrations of the mechanical oscillator defined in terms of the 

position and momentum for each cavity, 

.Q j =
(

2�

M�

)1/2 

(B j + B
† 
j ) ≡

(

2�

M�

)1/2 

q j (16.63) 

.Pj = −i (�M�/8)1/2 (B j − B
† 
j ) ≡ (�M�/8)1/2 p j (16.64) 

which imply that the commutation relations for the dimensionless canonical variables 

are .[q j , p j ] =  i . The single photon opto-mechnical coupling rate is 

.g0 = −  
ω0 

L

(

2�

M�

)1/2 

(16.65) 

with .ω0, L the optical resonance frequency and length of the optical cavity respec-

tively. We have take the gravitational wave to exert a time dependent force on each 

mirror . f (t) = f0 cos ωgt where . f0 = hLω2 
g

(

2M
��

)1/2 
and . h is the maximum frac-

tional change in the length, . L , of each cavity. The tidal forces acting on the mirrors 

are . π out of phase due to the gravitational wave. For simplicity we will assume the 

cavities and mechanical resonators are identical. 

The quantum stochastic differential equations are 

. 

da j 

dt  
= ǫ − i�a j − 

γ 

2 
a j − ig0q j a j + 

√
γ ain  j , (16.66) 

. 

dq j 

dt  
= �p j , (16.67) 

. 

dp  j 

dt  
= −�q j − g0a

† 
j a j − (−1) j f0s(t) − Ŵ j p j + 

√
Ŵ pin  j (16.68) 

where . Ŵ is the frictional decay rate of each mechanical system (assumed to be the 

same for simplicity). The mechanical components correspond to the usual classical 

Langevin equations for frictional damping. These equations are non linear due to 

the opto-mechanical coupling. The corresponding semiclassical equations may not 

have a stable steady state, but assuming we operate in a regime where they do, we 

can linearise the un-driven small-amplitude dynamics around this fixed point. 

The only difference between the two sets are in the phase of the driving force. In 

the absence of the gravitational wave we can thus treat the linearised dynamics as 
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the same for each opto-mechanical system and drop the subscript. Defining the new 

canonical operators as .δa = a − α0, δq = q − q0, δ  p = p − p0 where . α0, q0, p0 
are the semiclassical stable fixed points, see Exercise 16.3. We will now assume that 

we are in the highly under-damped regime for which .� ≪ Ŵ. 

The linearised semi-classical dynamics, in the under-damped limit, for the coupled 

opto-mechanical system, to lowest order in .g0, Ŵ/� is equivalent to 

. 

d 

dt  

⎛ 

⎜

⎜
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δx 

δy 

δq 

δ p 
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⎜
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(16.69) 

where .μ = 2g0α0 and .α0 = 
2ǫ
γ 

is the steady state field amplitude in the cavity, 

taken real. the field quadrature fluctuation operators are defined by . δx = δa + δa† 

and .δ y = −i(δa − δa†). It is clear that .δx(t) = δx(0)e− γ t 
2 . In the long-time limit, 

we can neglect the variables .δx for the deterministic part of the motion. Secondly 

we note the mirror position fluctuations .δq are literally coupled to .δy and thus 

directly determine the output intensity difference signal. Finally, the fluctuations of 

the in-phase field variable .δx drive the momentum of the mirror. This is the radiation 

pressure contribution. Setting.δx(0) = 0, the mirror dynamics is especially simple— 

a damped harmonic oscillator. 

When we linearise the output fields around the stationary states we find that the 

output signal is then determined by the operator 

.n̂− = 
γα0 

2 
(δy1 − δ y2) − 

√
γα0 

2 
(δ yin  1 − δyin  2 ) (16.70) 

where .δyk = i (δak − δa
† 
k ) and .δy

in  
k = i(δain  k − δa

† in  
k ). We have chosen the arbi-

trary phase reference so that the input amplitude, and thus the steady state amplitude 

.α0, is real. 

Each cavity may now be analysed using the input-output relations as the system 

is linear. The mean signal in a linearised semiclassical approximation can be shown 

to be [ 18] 

.〈n̂−(t)〉 = −
32hω0ω

2 
g I cos(ωgt + θ + φ) 

|Ŵ/2 + i (ωg − �)||Ŵ/2 + i(ωg + �)||γ /2 − i ωg|
(16.71) 

where, 

.I = 
4|ǫ|2 
γ 2

(16.72) 

.φ = −arctan

(

Ŵωg

Ŵ2/4 + �2 − ω2 
g

)

. (16.73) 
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and .θ = arctan(α0ωg/γ ). The signal is directly proportional to . f0 and thus to the 

mirror fractional displacement, . h, so this is a linear sensor for the gravitational wave 

amplitude. 

In the frequency domain we define the average signal as 

.|〈n−(ω)〉| = S(ωg)δ(ω − ωg) (16.74) 

where 

.S(ωg) = −
32hω0ω

2 
g I 

|�+||�−||γ /2 − i ω| (16.75) 

where 

.�+ = Ŵ/2 + i (ω − �) (16.76) 

.�− = Ŵ/2 − i (ω + �) (16.77) 

while the noise power density, or signal variance is 

.Vn− 
(ω) = 〈n−(ω)n−(ω)†〉 (16.78) 

Define the normalised variance by .N (ω) = 
Vn−(ω) 

2I
where . I is the output intensity 

from each cavity. Using the input-output relations this is given by we find that this is 

.N (ω) = 1 + 

16g2 0 IŴ
(

Ŵ2/4 + �2 + ω2
)

|�+(ω)|2|�−(ω)|2|γ /2 − i ω|2 
+

(16g2 0 I )
2�2 

|�+(ω)|2|�−(ω)|2|γ /2 − i ω|4
(16.79) 

The first term in (16.79) is the shot-noise of the incident light on the detector. The 

second term is the mirror noise. It is a direct consequence of treating the mirror as 

a quantum harmonic oscillator damped into a zero-temperature white-noise bath. 

This white-noise bath produces frequency-independent fluctuations in the mirror’s 

momentum which in turn produce small phase changes in the cavity light field and 

hence fluctuations in the output signal. The last term is the radiation pressure noise, 

which is produced by the intrinsic intensity fluctuations of the light field mode inside 

the cavity. 

We now consider how accurate the estimation of the parameter . h can be for this 

linear sensor. Using (16.75) we write the signal as 

.S(ω) = fs (ω)h (16.80) 

Signal processing theory tells us that for a measurement of a signal at a frequency 

.ωg the uncertainty in the estimation is .δh with 

.δh = 

√
2I N  (ω) 

| fs (ω)| 
1√
τ/2 

(16.81) 
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where the measurement time . τ is much greater than the period of the gravity wave. 

The minimum detectable . h is .hmin = δh. We can then minimise .δh as a function 

of mean photon number in each cavity, . I (see (16.72)), which is proportional to the 

power of the coherent field driving the cavity. The resulting minimum detectable 

amplitude is [ 18] 

.h2 min ≈
�

8Mω2 
g L

2τ�2 
[2� + γ ] (16.82) 

The first term arises from the vacuum noise in the light and the second term arises 

form modelling the mirror as a quantised harmonic oscillator damped to a white 

noise bath. 

Caves [ 14] proposed that the performance of the sensor would be improved if 

squeezed light was input the unused port of the interferometer, specifically, that the 

minimum detectable amplitude .hmin could be achieved for lower laser power. In 

the case of squeezed light there is an extra parameter—the phase of the squeezing 

relative to the coherent amplitude of the coherent input, (see Fig. 1.1). When the 

minimum amplitude is also optimised with respect to this phase, we find that [ 18] 

.h2 min ≈
�

8Mω2 
g L

2τ�2 
[2e−2|r |� + γ ] (16.83) 

where . r is the squeezing parameter of the squeezed light injected input the empty 

port. The optimum phase of the squeezing with respect to the coherent field, at the 

optimum power, is .π/2. The optimum power is independent of squeezing as the 

correlation term causes both the photon counting and radiation pressure noise terms 

to scale in exactly the same way. 

Problems 

16.1 The generator of displacements in quantum mechanics is the momentum oper-

ator. Show that if a displacement, . x , is generated unitarily, the QCR bound for 

estimating this parameter is 

.δx2 ≥ �
2 

N 〈� p̂2〉 (16.84) 

Investigate how cat states (Sect. 1.7) can be used to get close to this bound. 

16.2 Consider the unitary squeezing transformation . S(r ) = er (a
2−a† 2)/2 

(a) Find the QCR bound for estimating . r . 

(b) If the input state is the vacuum state how close do photon number measurements 

get to the QCR bound? 

16.3 The Bures statistical distance between two states .ρ1, ρ2 is given by 

.(sB (ρ1, ρ2))
2 = 2[1 − tr

√

ρ
1/2 
1 ρ2ρ

1/2 
1 ] (16.85) 
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(a) Setting .ρ1 = |ψ〉〈ψ | show that 

.s2 B = 2
[

1 −
√

〈ψ |ρ2|ψ〉
]

(16.86) 

(b) A cavity field is subject to dephasing decoherence described by the master equa-

tion 

. ρ̇ = −i ω[a†a, ρ] + ŴD[a†a]ρ (16.87) 

Solve this equation in the number basis for an initial coherent state and compute 

the rate of change of the Bures distance as a function of time. Interpret the results 

for the limits .t → 0 and .t → ∞. 

16.4 Show that to lowest oder in .g0 the semiclassical fixed points for the opto-

mechanical system of Sect. 16.6, in the absence of a gravitational wave are, . p0 = 

0, α0 = 2ǫ/γ , q0 = −g0|α0|2/�, where we choose . � = −g0q0 
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